Background: Riesling icewine is an important product of the Ontario wine industry. The objective of this study was to characterize concentrations in aroma compounds in aged icewines associated with three harvest dates (H1, H2, H3) using stir bar sorptive extraction-gas chromatography-mass spectrometry and to make inferences, where appropriate, with respect to their roles in potential wine quality.
Results: Delaying harvest decreased concentrations of many odorants, but increased many critical odor-active compounds; e.g. 1-octen-3-ol, ethyl benzoate, ethyl octanoate, cis-rose oxide, and β-ionone. H1 wines had higher concentrations of four aldehydes, three alcohols, nine esters, seven terpenes, γ-nonalactone, p-vinylguaiacol, β-damascenone, and 2-furanmethanol. However, many of these compounds, with some exceptions, have relatively high odor thresholds. Fourteen compounds were above their odor thresholds, including decanal, 1-octen-3-ol, phenylethyl alcohol, four ethyl esters, cis-rose oxide, linalool, γ-nonalactone, p-vinylguaiacol, ethyl cinnamate, β-damascenone, and 1,1,6-trimethyl-1,2-dihydronaphthalene. H3 wines contained higher concentrations of highly odor-active compounds, e.g. 1-octen-3-ol, cis-rose oxide, and β-ionone. Only phenylethyl alcohol [H3 odor activity value (OAV) = 0.33 (honey, spice, rose)] and linalool [H3 OAV = 0.92 (floral, lavender)] had H3 OAVs < 1.
Conclusions: Early harvest increased many esters and aliphatic compounds, but delayed harvest appeared to substantially increase concentrations of several highly odor-active compounds. © 2016 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.7650 | DOI Listing |
J Chromatogr A
December 2024
Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany; Leibniz Institute for Food Systems Biology at the Technical University of Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany. Electronic address:
Odor-active compounds are major quality parameters in food and other consumer products. In the analysis of odorants, gas chromatography (GC) plays a dominant role and is particularly indispensable for odorant screening by GC-olfactometry (GC-O). Whereas artifact formation during workup before GC analysis has been widely discussed, artifact formation during GC injection has not been adequately addressed so far.
View Article and Find Full Text PDFFood Chem
December 2024
School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
Glutathione (GSH) is an important precursor of meat flavor. This study aimed to evaluate the effect of GSH-curing on the flavor of cooked chicken. GSH-cured chicken with different concentrations and uncured chicken (blank) were roasted separately and comprehensively analyzed in terms of flavors, odor-active compounds, free amino acids, and fatty acids profile.
View Article and Find Full Text PDFCommun Chem
December 2024
Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany.
Aroma compositions are usually complex mixtures of odor-active compounds exhibiting diverse molecular structures. Due to chemical interactions of these compounds in the olfactory system, assessing or even predicting the olfactory quality of such mixtures is a difficult task, not only for statistical models, but even for trained assessors. Here, we combine fast automated analytical assessment tools with human sensory data of 11 experienced panelists and machine learning algorithms.
View Article and Find Full Text PDFFood Chem
December 2024
School of Light Industry, Beijing Technology and Business University, Beijing 100048, China. Electronic address:
The effects of vacuum oven drying at 60 °C on the aroma profile, key odorants, fatty acids, and chiral compounds of fresh Amomum tsaoko (AT) were evaluated over varying drying times. Quantitative descriptive analysis, solvent-assisted flavor evaporation, and gas chromatography-olfactometry-mass spectrometry identified and quantitated 36 odor-active compounds. Aldehydes, particularly geranial (1606-1809 mg/kg), were consistently prominent across all drying durations.
View Article and Find Full Text PDFFood Res Int
November 2024
National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!