Vasopressin-induced Ca(2+) signals in human adipose-derived stem cells.

Cell Calcium

Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA. Electronic address:

Published: March 2016

Intracellular Ca(2+) signals are essential for stem cell differentiation due to their ability to control signaling pathways involved in this process. Arginine vasopression (AVP) is a neurohypophyseal hormone that increases intracellular Ca(2+) concentration during adipogenesis via V1a receptors, Gq-proteins and the PLC-IP3 pathway in human adipose-derived stromal/stem cells (hASCs). These Ca(2+) signals originate through calcium release from pools within the endoplasmic reticulum and the extracellular space. AVP supplementation to the adipogenic media inhibits adipogenesis and key adipocyte marker genes. This review focuses on the intersection between AVP, Ca(2+) signals and ASC differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ceca.2015.12.006DOI Listing

Publication Analysis

Top Keywords

ca2+ signals
16
human adipose-derived
8
intracellular ca2+
8
vasopressin-induced ca2+
4
signals
4
signals human
4
adipose-derived stem
4
stem cells
4
cells intracellular
4
ca2+
4

Similar Publications

Predicting the location of coordinated metal ion-ligand binding sites using geometry-aware graph neural networks.

Comput Struct Biotechnol J

December 2024

Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.

More than 50 % of proteins bind to metal ions. Interactions between metal ions and proteins, especially coordinated interactions, are essential for biological functions, such as maintaining protein structure and signal transport. Physiological metal-ion binding prediction is pivotal for both elucidating the biological functions of proteins and for the design of new drugs.

View Article and Find Full Text PDF

Introduction: CD38, a regulator of intracellular calcium signalling, is highly expressed in immune cells. Mice lacking CD38 are very susceptible to acute bacterial infections, implicating CD38 in innate immune responses. The effects of CD38 inhibition on NLRP3 inflammasome activation in human primary monocytes and monocyte-derived macrophages have not been investigated.

View Article and Find Full Text PDF

Fine-tuned calcium homeostasis is crucial for murine erythropoiesis.

FEBS J

January 2025

Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.

Intracellular calcium (Ca) is a crucial signaling molecule involved in multiple cellular processes. However, the functional role of Ca in terminal erythropoiesis remains unclear. Here, we uncovered the dynamics of intracellular Ca levels during mouse erythroid development.

View Article and Find Full Text PDF

Succinate is a pivotal tricarboxylic acid cycle metabolite but also specifically activates the G- and G-coupled succinate receptor 1 (SUCNR1). Contradictory roles of succinate and succinate-SUCNR1 signaling include reports about its anti- or pro-inflammatory effects. The link between cellular metabolism and localization-dependent SUCNR1 signaling qualifies as a potential cause for the reported conflicts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!