Recent studies have shown that CD36 gene variants are associated with an increased prevalence of chronic disease. Although a genetic component to trainability has been proven, no data are available specifically on the influence of CD36 on training response. Two single nucleotide polymorphisms (SNPs) (rs1527479 and rs1984112) were assessed for associations with whole-body substrate oxidation, response to a 75-g dextrose oral glucose tolerance test, fasting plasma lipids, and cardiovascular disease risk factors in a young healthy cohort, both using cross-sectional analysis and following a 4-week endurance-exercise training program. Genotyping was performed using real-time polymerase chain reaction. Cross-sectional data were collected in 34 individuals (age, 22.7 ± 3.5 years), with 17 completing the training program. At baseline, TT SNP carriers at rs1527479 and wild-type GG carriers at rs1984112 were associated with significantly greater whole-body rate of fat oxidation (Fatox) during submaximal exercise (P < 0.05), whilst AA carriers at the same position were associated with elevated triglyceride (TG) levels. A significant genotype × time interaction in Fatox at SNP rs1984112 was identified at rest. Significant genotype × time interactions were present at rs1527479, with TT carriers exhibiting a favourable response to training when compared with C-allele carriers for fasting TG, diastolic blood pressure (DBP), and mean arterial pressure (MAP). In conclusion, cross-sectional assessment identified associations with Fatox and TG. Training response at both SNPs identified "at-risk" genotypes responding favourably to the training stimulus in Fatox, TG, DBP, and MAP. Although these data show potential pleiotropic influence of CD36 SNPs, assessment in a larger cohort is warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/apnm-2015-0430 | DOI Listing |
Phytomedicine
January 2025
Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:
Background: Non-alcoholic steatohepatitis (NASH) has become a serious public health concern with high global prevalence. The lack of safe and efficient treatment for the condition demands exploring new therapeutic solutions.
Purpose: In the present study, we investigated the protective efficacy of picrosides-rich fraction (PF) from Picrorhiza kurroa against steatohepatitis and revealed the molecular mechanism of action.
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11651, Cairo, Egypt.
The clinical use of dexamethasone (DXM) is associated with the development of non-alcoholic fatty liver disease (NAFLD). However, the mechanisms by which DXM-induced NAFLD is still incompletely known. Therefore, the current study aims to test the hypothesis that DXM-induced NAFLD is mediated by dysregulation of key genes involved in lipid metabolism and liraglutide (LG) can ameliorate these effects.
View Article and Find Full Text PDFWorld J Gastrointest Oncol
January 2025
Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11% in the United States. As for other types of tumors, such as colorectal cancer, aberrant lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.
Aim: To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid (FA) import into cell.
Antioxid Redox Signal
January 2025
Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent hepatic disorder worldwide. Arachidonic acid 15-lipoxygenase (ALOX15), an enzyme catalyzing the peroxidation of polyunsaturated fatty acids, plays a crucial role in various diseases. Here, we sought to investigate the involvement of ALOX15 in MASLD.
View Article and Find Full Text PDFExp Cell Res
January 2025
Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Department of Cardiology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China. Electronic address:
SRY-Box Transcription Factor-11 (SOX11) is a transcriptional regulatory factor that plays a crucial role in inflammatory responses. However, its involvement in atherosclerosis (AS), a cardiovascular disease driven by endothelial cell inflammation, remains unknown. This study aims to elucidate the role of SOX11 in AS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!