Supporting our hypothesis of common biological bases for post-traumatic stress disorder (PTSD) and addiction, we recently reported that rats exposed to a single prolonged stress (SPS), a PTSD model, develop a delayed behavioral sensitization of the noradrenergic system, similar to that observed in mice after four repeated drug administrations. However, sensitization after trauma was modulated by reactivity to novelty, and this aspect that had not been explored in the addiction model. The first aim of the paper was thus to investigate the influence of reactivity to novelty on delayed behavioral sensitization in rats after four repeated amphetamine injections. Injections were either distributed over 4 days, as conducted in mouse models of addiction, or massed during a single session, reproducing SPS conditions. The second aim was to investigate whether repeated amphetamine injections have similar behavioral consequences to those induced by PTSD. Our results showed that massed amphetamine injections induced more anxiety than distributed injections, and led to avoidance of drug-associated cues avoidance, while distributed injections somewhat reduced the startle response, such as is seen in SPS. In addition, massed amphetamine injections induced a delayed behavioral sensitization clearly affected by the reactivity to novelty, reproducing results observed following exposure to traumatic events. Finally, all rats receiving repeated amphetamine injections exhibited a behavioral sensitization in response to exposure to drug-associated cues. Taken together, these data strengthen the position that drug addiction and PTSD share some common mechanisms that we tried to clarify in this paper.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.euroneuro.2015.12.042DOI Listing

Publication Analysis

Top Keywords

amphetamine injections
24
behavioral sensitization
20
repeated amphetamine
16
delayed behavioral
16
reactivity novelty
16
injections
9
modulated reactivity
8
massed amphetamine
8
injections induced
8
distributed injections
8

Similar Publications

Differentially Expressed Nedd4-binding Protein Ndfip1 Protects Neurons Against Methamphetamine-induced Neurotoxicity.

Neurotox Res

January 2025

Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA, 21224, Baltimore, MD, U.S.A.

To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration.

View Article and Find Full Text PDF

Amphetamine abuse is a global health epidemic that is difficult to treat due to individual differences in response to environmental factors, including stress reactivity and anxiety levels, as well as individual neuronal differences, which may result in increased/decreased vulnerability to addiction. In the present study, we investigated whether the Wistar rats behavioral traits of high (HR) and low (LR) locomotor activity to novelty influence motivational behavior (induced feeding model; iFR by electrical stimulation of the ventral tegmental area; Es-VTA) supported by amphetamine injection into the nucleus accumbens shell (AcbSh) (HR, n = 5; LR, n = 5). A correlation was found between the novelty test's locomotor activity score and the frequency threshold percentage change ( < 0.

View Article and Find Full Text PDF

Background: Many variables may affect approaches of psychiatrists to methamphetamine-associated psychotic disorder (MAP) treatment. This study was aimed to reach adult psychiatrists actively practicing in Turkey through an internet-based survey and to determine their practices and attitudes to MAP treatment.

Methods: In this internet-based study, participants were divided into three groups based on their answers: Those who do not follow-up any MAP patient were group 1 (n = 78), partially involved in the treatment process of at least one patient diagnosed with MAP were group 2 (n = 128), completely involved in the treatment process of at least one patient diagnosed with MAP were group 3 (n = 202).

View Article and Find Full Text PDF

Effects of the kappa-opioid receptor antagonist nor-binaltorphimine on methamphetamine-vs-food choice in male rhesus monkeys.

Drug Alcohol Depend

January 2025

Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, MD, USA.

Background: Kappa-opioid receptors (KOR) are hypothesized to be involved in mediating ongoing methamphetamine self-administration. Previous rat studies have demonstrated that treatment with the KOR antagonist nor-binaltorphimine (nor-BNI) decreases methamphetamine self-administration. However, KOR antagonist effects on methamphetamine self-administration in nonhuman primates are unknown.

View Article and Find Full Text PDF

Inhibition of RtTg neurons reverses methamphetamine-induced attention deficits.

Acta Neuropathol Commun

November 2024

Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.

Chronic methamphetamine (METH) use, a prevalent psychostimulant, is known to impair attention, yet the cellular mechanisms driving these deficits remain poorly understood. Here, we employed a rat model of repeated passive METH injections and evaluated attentional performance using the 5-choice serial reaction time task (5-CSRTT). Using single-nucleus RNA sequencing, immunofluorescence and in situ hybridization, we characterized the response of neurons in the reticulotegmental nucleus (RtTg) to METH exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!