Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Activation of the maternal innate immune system, termed "maternal immune activation" (MIA), represents a common environmental risk factor for schizophrenia. Whereas evidence suggests dysregulation of GABA systems may underlie the pathophysiology of schizophrenia, a role for MIA in alteration of GABAergic systems is less clear. Here, pregnant rats received either the viral mimetic polyriboinosinic-polyribocytidilic acid or vehicle injection on gestational day 14. Glutamic acid decarboxylase-67 (GAD67) mRNA expression was examined in male offspring at postnatal day (P)14, P30 and P60. At P60, GAD67 mRNA was elevated in hippocampus and thalamus and decreased in prefrontal cortex of MIA offspring. MIA-induced alterations in GAD expression could contribute to the pathophysiology of schizophrenia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803111 | PMC |
http://dx.doi.org/10.1016/j.schres.2016.01.041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!