Aim: To study the synthesis of phytohormones (auxins, cytokinins, abscisic acid) under cultivation of Nocardia vaccinii IMV B-7405 (surfactants producer) in media containing different carbon sources (glycerol, refined sunflower oil, as well as waste oil after frying potatoes and meat).

Methods: Phytohormones were extracted from supernatants of culture liquid (before or after surfactant separation) by ethylacetate (auxins, abscisic acid) and n-butanol (cytokinins), concentrated and purified by thin-layer chromatography, then quantitative determination was performed using a scanning Sorbfil spectrodensitometer.

Results: While growing in medium with refined oil IMV B-7405 strain synthesized 1.8 ± 0.09 g/l extracellular surfactant, also maximum amount of auxins (245-770 µ/l) and cytokinins (134-348 µl). Cultivation of N. vaccini LMV B-7405 on waste oil was accompanied by decreasing amount of phytohormones to 23-84 µ/l (auxins) and 16-90 µ/l (cytokinins) and increasing surfactant concentration to 2.3-2.6 g/l. The level of abscisic acid synthesis was practically not dependent on the nature of growth substrate, was substantially lower than that of auxins and cytokinins and ranged from 2 to 12 µ/l.

Conclusions: Obtained data demonstrate the possibility of using oil-containing industrial waste for the simultaneous synthesis of both surfactants and phytohormones, and indicate the need for studies of the effect of producer cultivation conditions on the biological properties of the target products of microbial synthesis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

abscisic acid
12
nocardia vaccinii
8
vaccinii imv
8
auxins cytokinins
8
imv b-7405
8
waste oil
8
µ/l cytokinins
8
auxins
5
cytokinins
5
[synthesis phytohormones
4

Similar Publications

The ASPARAGINE-RICH PROTEIN-LYST-INTERACTING PROTEIN5 complex regulates non-canonical AUTOPHAGY8 degradation in Arabidopsis.

Plant Physiol

January 2025

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China.

The endocytic and autophagic pathways play important roles in abiotic stress responses and maintaining cellular homeostasis in plants. Asparagine Rich Proteins (NRPs) are plant-specific stress-responsive proteins that are involved in many abiotic stress-related signaling pathways. We previously demonstrated that NRP promotes PIN FORMED 2 (PIN2) vacuolar degradation to maintain PIN2 homeostasis under abscisic acid (ABA) treatment in Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.

View Article and Find Full Text PDF

Salt stress disturbs plant growth and photosynthesis due to its toxicity. The ice plant Mesembryanthemum crystallinum is a highly salt-tolerant facultative crassulacean acid metabolism (CAM) plant. However, the genetic basis of the salt tolerance mechanisms in ice plants remains unclear.

View Article and Find Full Text PDF

Cold stress strongly hinders plant growth and development. However, the molecular and physiological adaptive mechanisms of cold stress tolerance in plants are not well understood. Plants adopt several morpho-physiological changes to withstand cold stress.

View Article and Find Full Text PDF

Background: Drought is a major limiting factor for plant survival and crop productivity. Stylosanthes angustifolia, a pioneer plant, exhibits remarkable drought tolerance, yet the molecular mechanisms driving its drought resistance remain largely unexplored.

Results: We present a chromosome-scale reference genome of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!