Colloid Mobilization in a Fractured Soil: Effect of Pore-Water Exchange between Preferential Flow Paths and Soil Matrix.

Environ Sci Technol

Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States.

Published: March 2016

Exchange of water and solutes between contaminated soil matrix and bulk solution in preferential flow paths has been shown to contribute to the long-term release of dissolved contaminants in the subsurface, but whether and how this exchange can affect the release of colloids in a soil are unclear. To examine this, we applied rainfall solutions of different ionic strength on an intact soil core and compared the resulting changes in effluent colloid concentration through multiple sampling ports. The exchange of water between soil matrix and the preferential flow paths leading to each port was characterized on the basis of the bromide (conservative tracer) breakthrough time at the port. At individual ports, two rainfalls of a certain ionic strength mobilized different amounts of colloids when the soil was pre-exposed to a solution of lower or higher ionic strength. This result indicates that colloid mobilization depended on rainfall solution history, which is referred as colloid mobilization hysteresis. The extent of hysteresis was increased with increases in exchange of pore water and solutes between preferential flow paths and matrix. The results indicate that the soil matrix exchanged the old water from the previous infiltration with new infiltrating water during successive infiltration and changed the pore water chemistry in the preferential flow paths, which in turn affected the release of soil colloids. Therefore, rainfall solution history and soil heterogeneity must be considered to assess colloid mobilization in the subsurface. These findings have implications for the release of colloids, colloid-associated contaminants, and pathogens from soils.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.5b04767DOI Listing

Publication Analysis

Top Keywords

preferential flow
20
flow paths
20
colloid mobilization
16
soil matrix
16
ionic strength
12
soil
10
exchange water
8
water solutes
8
release colloids
8
colloids soil
8

Similar Publications

The brain is structurally and functionally modular, although recent evidence has raised questions about the extent of both types of modularity. Using a simple, toy artificial neural network setup that allows for precise control, we find that structural modularity does not in general guarantee functional specialization (across multiple measures of specialization). Further, in this setup (1) specialization only emerges when features of the environment are meaningfully separable, (2) specialization preferentially emerges when the network is strongly resource-constrained, and (3) these findings are qualitatively similar across several different variations of network architectures.

View Article and Find Full Text PDF

Noble gas transport through geologic media has important applications in the prediction and characterization of measured gas signatures related to underground nuclear explosions (UNEs). Retarding processes such as adsorption can cause significant species fractionation of radionuclide gases, which has implications for measured and predicted signatures used to distinguish radioxenon originating from civilian nuclear facilities or from UNEs. Accounting for the effects of variable water saturation in geologic media on tracer transport is one of the most challenging aspects of modeling gas transport because there is no unifying relationship for the associated tortuosity changes between different rock types, and reactive transport processes such as adsorption that are affected by the presence of water likewise behave differently between gas species.

View Article and Find Full Text PDF

The discharge of chlorinated effluent from wastewater treatment plants enhances dissolved oxygen in the receiving river: From laboratory study to practical application.

Water Res

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.

Dissolved oxygen (DO) is essential for the health of aquatic ecosystems, supporting biogeochemical cycles and the decomposition of organic matter. However, continuous untreated external inputs from illicit discharges or sewer overflows, coupled with inadequate ecological base flow, have led to widespread river deoxygenation and serious ecological crises. This study demonstrates that chlorinated wastewater treatment plant (WWTP) effluent can significantly enhance DO levels in downstream rivers, particularly in areas with high pollution loads or poor ecological base flow.

View Article and Find Full Text PDF

BLOC1S1 Control of Vacuolar Organelle Fidelity Modulates Murine T2 Cell Immunity and Allergy Susceptibility.

Allergy

December 2024

Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, Maryland, USA.

Background: The levels of biogenesis of lysosome organelles complex 1 subunit 1 (BLOC1S1) control mitochondrial and endolysosome organelle homeostasis and function. Reduced fidelity of these vacuolar organelles is increasingly being recognized as important in instigating cell-autonomous immune cell activation. We reasoned that exploring the role of BLOC1S1 in CD4 T cells may further advance our understanding of regulatory events linked to mitochondrial and/or endolysosomal function in adaptive immunity.

View Article and Find Full Text PDF

Propagation of Orientation Across Lengthscales in Sheared Self-Assembling Hierarchical Suspensions via Rheo-PLI-SAXS.

Adv Sci (Weinh)

December 2024

Department of Industrial and Materials Science, Division of Engineering Materials, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.

Simultaneous rheological, polarized light imaging, and small-angle X-ray scattering experiments (Rheo-PLI-SAXS) are developed, thereby providing unprecedented level of insight into the multiscale orientation of hierarchical systems in simple shear. Notably, it is observed that mesoscale alignment in the flow direction does not develop simultaneously across nano-micro lengthscales in sheared suspensions of rod-like chiral-nematic (meso) phase forming cellulose nanocrystals. Rather, with increasing shear rate, orientation is observed first at mesoscale and then extends to the nanoscale, with influencing factors being the aggregation state of the hierarchy and concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!