Recombinant adeno-associated viruses (rAAVs) are commonly used vehicles for in vivo gene transfer. However, the tropism repertoire of naturally occurring AAVs is limited, prompting a search for novel AAV capsids with desired characteristics. Here we describe a capsid selection method, called Cre recombination-based AAV targeted evolution (CREATE), that enables the development of AAV capsids that more efficiently transduce defined Cre-expressing cell populations in vivo. We use CREATE to generate AAV variants that efficiently and widely transduce the adult mouse central nervous system (CNS) after intravenous injection. One variant, AAV-PHP.B, transfers genes throughout the CNS with an efficiency that is at least 40-fold greater than that of the current standard, AAV9 (refs. 14,15,16,17), and transduces the majority of astrocytes and neurons across multiple CNS regions. In vitro, it transduces human neurons and astrocytes more efficiently than does AAV9, demonstrating the potential of CREATE to produce customized AAV vectors for biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088052PMC
http://dx.doi.org/10.1038/nbt.3440DOI Listing

Publication Analysis

Top Keywords

aav variants
8
gene transfer
8
aav capsids
8
efficiently transduce
8
aav
6
cre-dependent selection
4
selection yields
4
yields aav
4
variants widespread
4
widespread gene
4

Similar Publications

Background: Progranulin (PGRN) haploinsufficiency is a major risk factor for frontotemporal lobar degeneration with TDP-43 pathology (FTLD-GRN). Multiple therapeutic strategies are in clinical development to restore PGRN levels in the CNS, including gene therapy. However, a limitation of current gene therapy approaches aimed to alleviate FTLD-associated pathologies may be their inefficient brain exposure and biodistribution.

View Article and Find Full Text PDF

Background: A recent study of familial Alzheimer's disease identified a mutation in the RELN gene that appeared to delay the onset of dementia. It was hypothesized that this RELN-COLBOS variant protected against dementia by enhanced signaling at reelin receptors. We previously developed a secreted, bio-active reelin fragment (R36) and packaged it into AAV.

View Article and Find Full Text PDF

Purpose: This study aimed to identify a novel recombinant adeno-associated virus (rAAV) capsid variant that can widely transfect the deep retina through intravitreal injection and to assess their effectiveness and safety in gene delivery.

Methods: By adopting the sequences of various cell-penetrating peptides and inserting them into the capsid modification region of AAV2, we generated several novel variants. The green fluorescent protein (GFP)-carrying variants were screened following intravitreal injection.

View Article and Find Full Text PDF

RUNX2 Phase Separation Mediates Long-Range Regulation Between Osteoporosis-Susceptibility Variant and XCR1 to Promote Osteoblast Differentiation.

Adv Sci (Weinh)

December 2024

Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.

GWASs have identified many loci associated with osteoporosis, but the underlying genetic regulatory mechanisms and the potential drug target need to be explored. Here, a new regulatory mechanism is found that a GWAS intergenic SNP (rs4683184) functions as an enhancer to influence the binding affinity of transcription factor RUNX2, whose phase separation can mediate the long-range chromatin interaction between enhancer and target gene XCR1 (a member of the GPCR family), leading to changes of XCR1 expression and osteoblast differentiation. Bone-targeting AAV of Xcr1 can improve bone formation in osteoporosis mice, suggesting that XCR1 can be a new susceptibility gene for osteoporosis.

View Article and Find Full Text PDF

Targeted gene delivery to vascular smooth muscle cells (VSMCs) could prevent or improve a variety of diseases affecting the vasculature and particularly the aorta. Thus, we aimed to develop a delivery vector that efficiently targets VSMCs. We selected engineered adeno-associated virus (AAV) capsids from a random AAV capsid library and tested the top enriched motifs in parallel screening through individual barcoding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!