In this paper, we present an objective method for localization of proteins in blood brain barrier (BBB) vasculature using standard immunohistochemistry (IHC) techniques and bright-field microscopy. Images from the hippocampal region at the BBB are acquired using bright-field microscopy and subjected to our segmentation pipeline which is designed to automatically identify and segment microvessels containing the protein glucose transporter 1 (GLUT1). Gabor filtering and k-means clustering are employed to isolate potential vascular structures within cryosectioned slabs of the hippocampus, which are subsequently subjected to feature extraction followed by classification via decision forest. The false positive rate (FPR) of microvessel classification is characterized using synthetic and non-synthetic IHC image data for image entropies ranging between 3 and 8 bits. The average FPR for synthetic and non-synthetic IHC image data was found to be 5.48% and 5.04%, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4734698PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0148411PLOS

Publication Analysis

Top Keywords

blood brain
8
brain barrier
8
bright-field microscopy
8
synthetic non-synthetic
8
non-synthetic ihc
8
ihc image
8
image data
8
automated protein
4
protein localization
4
localization blood
4

Similar Publications

Radioactive brain injury, a severe complication ensuing from radiotherapy for head and neck malignancies, frequently manifests as cognitive impairment and substantially diminishes patients' quality of life. Despite its profound impact, the pathogenesis of this condition remains inadequately elucidated, and efficacious treatments are notably absent in clinical practice. Consequently, contemporary interventions predominantly focus on symptom alleviation rather than achieving a radical cure or reversing the injury process.

View Article and Find Full Text PDF

The central nervous system (CNS) parenchyma has conventionally been believed to lack lymphatic vasculature, likely due to a non-permissive microenvironment that hinders the formation and growth of lymphatic endothelial cells (LECs). Recent findings of ectopic expression of LEC markers including Prospero Homeobox 1 (PROX1), a master regulator of lymphatic differentiation, and the vascular permeability marker Plasmalemma Vesicle Associated Protein (PLVAP), in certain glioblastoma and brain arteriovenous malformations (AVMs), has prompted investigation into their roles in cerebrovascular malformations, tumor environments, and blood-brain barrier (BBB) abnormalities. To explore the relationship between ectopic LEC properties and BBB disruption, we utilized endothelial cell-specific overexpression mutants.

View Article and Find Full Text PDF

The vasodilator hydralazine (HYZ) has been used clinically for ∼ 70 years and remains on the World Health Organization's List of Essential Medicines as a therapy for preeclampsia. Despite its longstanding use and the concomitant progress toward a general understanding of vasodilation, the target and mechanism of HYZ have remained unknown. We show that HYZ selectively targets 2-aminoethanethiol dioxygenase (ADO) by chelating its metal cofactor and alkylating one of its ligands.

View Article and Find Full Text PDF

Background And Purpose: Radiotherapy for paediatric posterior fossa tumours may cause complications in the brainstem and upper spinal cord due to high doses. With proton therapy (PT) this risk may increase due to higher relative biological effectiveness (RBE) from elevated linear energy transfer (LET). This study assesses variations in LET in the brainstem and spinal cord in proton treatment plans from European centres.

View Article and Find Full Text PDF

Objective: The goal of a decompressive craniectomy (DC) or a hinge craniotomy (HC), is to treat intracranial hypertension and reduce mortality. Traditionally, the decompression procedure has been performed with cranial bone removal. However, decompression and repositioning the cranial bone, named HC, has been presented as an alternative for certain cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!