Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes' placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801549 | PMC |
http://dx.doi.org/10.3390/s16020171 | DOI Listing |
Adv Mater
January 2025
Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Haidian, Beijing, 100084, China.
Quantitative assessment for post-stroke spasticity remains a significant challenge due to the encountered variable resistance during passive stretching, which can lead to the widely used modified Ashworth scale (MAS) for spasticity assessment depending heavily on rehabilitation physicians. To address these challenges, a high-force-output triboelectric soft pneumatic actuator (TENG-SPA) inspired by a lobster tail is developed. The bioinspired TENG-SPA can generate approximately 20 N at 0.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China.
Bird species detection is critical for applications such as the analysis of bird population dynamics and species diversity. However, this task remains challenging due to local structural similarities and class imbalances among bird species. Currently, most deep learning algorithms focus on designing local feature extraction modules while ignoring the importance of global information.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518000, China.
This paper introduces a novel energy-efficient lightweight, void hole avoidance, localization, and trust-based scheme, termed as Energy-Efficient and Trust-based Autonomous Underwater Vehicle (EETAUV) protocol designed for 6G-enabled underwater acoustic sensor networks (UASNs). The proposed scheme addresses key challenges in UASNs, such as energy consumption, network stability, and data security. It integrates a trust management framework that enhances communication security through node identification and verification mechanisms utilizing normal and phantom nodes.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Information Science and Engineering, Shenyang University of Technology, Shenyang 110167, China.
In recent years, wireless sensor networks (WSNs) have become a crucial technology for infrastructure monitoring. To ensure the reliability of monitoring services, evaluating the network's reliability is particularly important. Sensor nodes are distributed linearly when monitoring linear structures, such as railway bridges, forming what is known as a Linear Wireless Sensor Network (LWSN).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Computer Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia.
Traffic flow prediction is a pivotal element in Intelligent Transportation Systems (ITSs) that provides significant opportunities for real-world applications. Capturing complex and dynamic spatio-temporal patterns within traffic data remains a significant challenge for traffic flow prediction. Different approaches to effectively modeling complex spatio-temporal correlations within traffic data have been proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!