The aim of the present study was to analyze a role of the ERK1/2 signaling pathway in the regulation of excitation and inhibitory neurons in the hippocampus and the temporal cortex of Krushinsky-Molodkina rats during seizure development finalizing with ataxia. Analysis was done by Western bloting as well as by immunohistochemistry. The results demonstrated significant up-regulation of ERK1/2 activity in the hippocampus in several seconds after sound stimulation. At the same time increased ERK1/2 activity was correlated with enhanced level of SNARE protein SNAP-25 and activation of synapsin I, the proteins which regulate exocytosis machinery. Decreased level of VGLUT2 associated with activation of ERK1/2 and exocytosis proteins supposed activation of glutamate release in the hippocampus, while in the temporal cortex diminished activity of ERK1/2 and synapsin I associated with VGLUT2 up-regulation assumed inhibition of glutamatergic transmission. Our data let us supposed that decreasing of glutamate release in th& temporal cortex could be a trigger for the inhibition of hippocampal glutamatergic system and the beginning of further ataxia stage. Our data demonstrated correlation between expression and activity of exocytosis proteins and ERK1/2 mainly in the glutamategic neurons of the hippocampus and the temporal cortex that let us proposed significant role of ERK1/2 kinases as a positive regulator of glutamate release and as a result initiation of seizure expression.
Download full-text PDF |
Source |
---|
Cogn Affect Behav Neurosci
January 2025
Departamento de Psicología ClínicaPsicobiología y MetodologíaFacultad de Psicología, Universidad de La Laguna, La Laguna, 38200, Tenerife, Spain.
Small animal phobia (SAP) is a subtype of specific phobia characterized by an intense and irrational fear of small animals, which has been underexplored in the neuroscientific literature. Previous studies often faced limitations, such as small sample sizes, focusing on only one neuroimaging modality, and reliance on univariate analyses, which produced inconsistent findings. This study was designed to overcome these issues by using for the first time advanced multivariate machine-learning techniques to identify the neural mechanisms underlying SAP.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
Seizures elicited by corneal 6-Hz stimulation are widely acknowledged as a model of temporal lobe seizures. Despite the intensive research in rodents, no studies hint at this model in developing animals. We focused on seven age groups of both male and female rats.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Allen Institute for Brain Science, Seattle, WA, USA.
Background: Applying single-cell RNA sequencing (scRNA-seq) to the study of neurodegenerative disease has propelled the field towards a more refined cellular understanding of Alzheimer's disease (AD); however, directly linking protein pathology to transcriptomic changes has not been possible at scale. Recently, a high-throughput method was developed to generate high-quality scRNA-seq data while retaining cytoplasmic proteins. Tau is a cytoplasmic protein and when hyperphosphorylated is integrally involved in AD progression.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Sapienza University of Rome, Rome, Rome, Italy.
Background: Biological sex influences Alzheimer's disease (AD) development, particularly concerning brain insulin resistance (bIR) and early energy metabolism defects. Biliverdin reductase-A (BVR-A) plays a crucial role in insulin signaling, and its downregulation leads to bIR. However, the sex-related differences in AD neuropathology and underlying mechanisms remain unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Heterogeneity in the progression of clinical dementia poses a significant challenge, impeding the effectiveness of current therapies for Alzheimer's disease (AD). To decipher the molecular mechanisms governing heterogeneity in AD progression that remains a critical knowledge gap precluding rational therapeutic design, we investigated the biochemical and biophysical properties of tau present in the inferior temporal gyrus (ITG) and prefrontal cortex (PFC) brain regions of AD patients who had varying disease progression rates. To explore gene expression changes in the ITG which are associated with tau pathology and cognitive decline, we used RNA sequencing for molecular characterization of patients displaying tau and clinical heterogeneity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!