The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4936974DOI Listing

Publication Analysis

Top Keywords

input optics
16
advanced ligo
8
input
5
ligo input
4
optics
4
optics advanced
4
ligo gravitational
4
gravitational wave
4
wave detectors
4
detectors nearing
4

Similar Publications

Hyperspectral imaging (HSI) systems acquire images with spectral information over a wide range of wavelengths but are often affected by chromatic and other optical aberrations that degrade image quality. Deconvolution algorithms can improve the spatial resolution of HSI systems, yet retrieving the point spread function (PSF) is a crucial and challenging step. To address this challenge, we have developed a method for PSF estimation in HSI systems based on computed wavefronts.

View Article and Find Full Text PDF

Background: Large language models have shown remarkable efficacy in various medical research and clinical applications. However, their skills in medical image recognition and subsequent report generation or question answering (QA) remain limited.

Objective: We aim to finetune a multimodal, transformer-based model for generating medical reports from slit lamp images and develop a QA system using Llama2.

View Article and Find Full Text PDF

Early allelopathic input and later nutrient addition mediated by litter decomposition of invasive affect native plant and facilitate its invasion.

Front Plant Sci

December 2024

Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.

Litter decomposition is essential for nutrient and chemical cycling in terrestrial ecosystems. Previous research on litter decomposition has often underestimated its impact on soil nutrient dynamics and allelopathy. To address this gap, we conducted a comprehensive study involving both field and greenhouse experiments to examine the decomposition and allelopathic effects of the invasive L.

View Article and Find Full Text PDF

Tuning the photophysical response is indispensable in realizing the full potential of phosphors to meet the demands of multifunctional applications, such as solid-state lighting and optical thermometry. Herein, orange-red emission from an Sm-based LiYTeO system was studied for the first time with CIE coordinates of (0.488, 0.

View Article and Find Full Text PDF

Supercontinuum generation in optical fiber involves complex nonlinear dynamics, making optimization challenging, and typically relying on trial-and-error or extensive numerical simulations. Machine learning and metaheuristic algorithms offer more efficient optimization approaches. We report here an experimental study of supercontinuum spectral shaping by tuning the phase of the input pulses, different optimization approaches including a genetic algorithm, particle swarm optimizer, and simulated annealing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!