Partial wrapping and spontaneous endocytosis of spherical nanoparticles by tensionless lipid membranes.

J Chem Phys

Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA.

Published: January 2016

Computer simulations of an implicit-solvent particle-based model are performed to investigate the interactions between small spherical nanoparticles and tensionless lipid bilayers. We found that nanoparticles are either unbound, wrapped by the bilayer, or endocytosed. The degree of wrapping increases with increasing the adhesion strength. The transition adhesion strength between the unbound and partially wrapped states decreases as the nanoparticle diameter is increased. We also observed that the transition adhesion strength between the wrapped states and endocytosis state decreases with increasing the nanoparticle diameter. The partial wrapping of the nanoparticles by the tensionless bilayer is explained by an elastic theory which accounts for the fact that the interaction between the nanoparticle and the bilayer extends beyond the contact region. The theory predicts that for small nanoparticles, the wrapping angle increases continuously with increasing the adhesion strength. However, for relatively large nanoparticles, the wrapping angle exhibits a discontinuity between weakly and strongly wrapped states. The size of the gap in the wrapping angle between the weakly wrapped and strongly wrapped states increases with decreasing the range of nanoparticle-bilayer interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4723410PMC
http://dx.doi.org/10.1063/1.4939764DOI Listing

Publication Analysis

Top Keywords

adhesion strength
16
wrapped states
16
nanoparticles tensionless
12
wrapping angle
12
partial wrapping
8
spherical nanoparticles
8
tensionless lipid
8
increasing adhesion
8
transition adhesion
8
nanoparticle diameter
8

Similar Publications

Shear bond strength and ARI scores of metal brackets to glazed glass ceramics and zirconia: an in vitro study investigating surface treatment protocols.

BMC Oral Health

December 2024

Faculty of Dentistry, Innovative Dental Materials and Interfaces Research Unit (URB2i), UR 4462, Paris Cité University, 1 rue Maurice Arnoux, Montrouge, 92120, France.

Objective: To evaluate the shear bond strength (SBS) and adhesive remnant index (ARI) scores of metal brackets to glazed lithium disilicate reinforced glass-ceramics and zirconia according to various surface treatment protocols.

Methods: A total of 240 lithium disilicate ceramic (LD) and 240 zirconia (Zr) blocks were randomly divided according to sandblasting, hydrofluoric acid (HF) etching, universal primer use, and the adhesive system applied. A maxillary canine metal bracket was bonded to each sample with resin cement (Transbond XT, TXT).

View Article and Find Full Text PDF

Constructing a green modifier by using glyoxal-urea resin and chitosan to obtain a modified soy protein adhesive with high bonding strength and excellent water resistance.

Int J Biol Macromol

December 2024

Yunnan Key Laboratory of Wood Adhesives and Glue Products, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China. Electronic address:

The manufacturing of soy-based adhesives with high bonding strength, excellent water resistance, and exceptional environmental performance still faces difficulties. In this work, using glyoxal-urea (GU) resin, chitosan (CS), and soy protein isolate (SPI) as the primary raw materials in order to effectively mitigate the release of free formaldehyde commonly found in traditional wood-based panels. Obtaining an adhesive with high strength, excellent water resistance, and a stable cross-linking structure of GU/CS/SPI (CS represents different mass fractions of chitosan solution).

View Article and Find Full Text PDF

Persistent oxidative stress following bone defects significantly impedes the repair of bone tissue. Designing an antioxidative hydrogel with a suitable mechanical strength can help alter the local microenvironment and promote bone defect healing. In this work, α-lipoic acid (LA), a natural antioxidant small molecule, was chemically cross-linked with lipoic acid-functionalized poly(ethylene glycol) (PEG, = 6k or 10k) in sodium bicarbonate solution, to prepare LA-PEG hydrogels (LP, = 6k or 10k).

View Article and Find Full Text PDF

Assessment of surface treatment methods for strengthening the interfacial adhesion in CARALL fiber metal laminates.

Sci Rep

December 2024

Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.

Metal and polymer interface bonding significantly influences the mechanical performance of fiber metal laminates (FMLs). Therefore, the effect of surface treatments (mechanical abrasion, nitric acid etching, P2 etching, sulfuric acid anodizing (SAA), and electric discharge machine (EDM) texturing) carried on aluminum 2024-T3 alloy sheets was evaluated considering surface morphology, surface topography, and surface roughness. Further, the influence of surface treatments on interfacial adhesion strength and failure mode between the aluminum alloy and carbon fiber prepreg was investigated.

View Article and Find Full Text PDF

Polylactic acid (PLA) composites with high straw content face several challenges, primarily due to the inherent brittleness of straw and its poor compatibility with the polymer matrix. In this study, scanning electron microscopy (SEM) was used to analyze the microscopic structure of wheat straw chemically modified by NaOH and the silane coupling agent, and it was concluded that both treatments effectively removed waxes and silica from the surface of the straw, enhanced fiber roughness, and improved interfacial adhesion. Notably, the silane coupling agent treatment not only facilitated the formation of chemical bonds between the straw fibers and the PLA matrix but also filled the interfiber pores, significantly increasing the structural density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!