In this paper, we show that the full Hamiltonian for a molecule in an electromagnetic field can be separated into a molecular Hamiltonian and a field Hamiltonian, both with gauge-invariant expectation values. The expectation value of the molecular Hamiltonian gives physically meaningful results for the energy of a molecule in a time-dependent applied field. In contrast, the usual partitioning of the full Hamiltonian into molecular and field terms introduces an arbitrary gauge-dependent potential into the molecular Hamiltonian and leaves a gauge-dependent form of the Hamiltonian for the field. With the usual partitioning of the Hamiltonian, this same problem of gauge dependence arises even in the absence of an applied field, as we show explicitly by considering a gauge transformation from zero applied field and zero external potentials to zero applied field, but non-zero external vector and scalar potentials. We resolve this problem and also remove the gauge dependence from the Hamiltonian for a molecule in a non-zero applied field and from the field Hamiltonian, by repartitioning the full Hamiltonian. It is possible to remove the gauge dependence because the interaction of the molecular charges with the gauge potential cancels identically with a gauge-dependent term in the usual form of the field Hamiltonian. We treat the electromagnetic field classically and treat the molecule quantum mechanically, but nonrelativistically. Our derivation starts from the Lagrangian for a set of charged particles and an electromagnetic field, with the particle coordinates, the vector potential, the scalar potential, and their time derivatives treated as the variables in the Lagrangian. We construct the full Hamiltonian using a Lagrange multiplier method originally suggested by Dirac, partition this Hamiltonian into a molecular term Hm and a field term Hf, and show that both Hm and Hf have gauge-independent expectation values. Any gauge may be chosen for the calculations; but following our partitioning, the expectation values of the molecular Hamiltonian are identical to those obtained directly in the Coulomb gauge. As a corollary of this result, the power absorbed by a molecule from a time-dependent, applied electromagnetic field is equal to the time derivative of the non-adiabatic term in the molecular energy, in any gauge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4938564 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
A carbon nanotube (CNT) composite is an effective method to improve the thermoelectricity of materials. However, the depletion layer between the CNT and thermoelectric (TE) material always decreases the contribution of CNT to the conductivity of the TE material. It is important to eliminate the depletion layer for improving the TE properties.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electrical Engineering, University of Tehran, Tehran, 14179-35840, Iran.
This paper introduces an analytical method for studying power transmission through an infinite array of helical-shaped metal particles in a lossy dielectric medium. While the assessment of composite slabs' transmitted power has been extensively researched in the electromagnetic interference (EMI) shielding field, many studies lack an adequate problem description. The primary inadequacy of these studies is the need for an analytical framework.
View Article and Find Full Text PDFSci Total Environ
January 2025
Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 310030, Hangzhou, China. Electronic address:
Thanks to the progress of science and technology, human life expectancy has dramatically increased in the past few decades, but accompanied by rapid ageing of population, resulting in increased burden on society. At the same time, the living environment, especially the electromagnetic environment, has also greatly changed due to science and technology advances. The effect of artificial electromagnetic fields (EMFs) emitted from power lines, mobile phones, wireless equipment, and other devices on ageing and ageing-related diseases are receiving increasing attention.
View Article and Find Full Text PDFThe extreme electromagnetic near-field environment of nanoplasmonic resonators and metamaterials can give rise to unprecedented electromagnetic heating effects, enabling large and manipulable temperature gradients on the order of 10-10 K/nm. In this Letter, by interfacing traditional semiconductor quantum dots with industry-grade plasmonic transducer technology, we demonstrate that the near-field-induced thermal gradient can facilitate the requisite population inversion for coherent phonon amplification and lasing at the nanoscale. Our detailed analysis uncovers both the characteristics and parameter sensitivity of inversion and relaxation oscillations in the system, thereby unveiling hitherto unexplored opportunities for leveraging plasmonic near-field effects in the context of quantum thermodynamics and phononics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Low-dimensional materials (LDMs) with unique electromagnetic properties and diverse local phenomena have garnered significant interest, particularly for their low-energy responses within the terahertz (THz) range. Achieving deep subwavelength resolution, THz nanoscopy offers a promising route to investigate LDMs at the nanoscale. Steady-state THz nanoscopy has been demonstrated as a powerful tool for investigating light-matter interactions across boundaries and interfaces, enabling insights into physical phenomena such as localized collective oscillations, quantum confinement of quasiparticles, and metal-to-insulator phase transitions (MITs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!