Low-dose irradiation (LDI) exhibits a positive effect on osteoblasts and inhibitory effect of inflammation. Here, we test the hypothesis that LDI can promote osseointegration and inhibit the inflammatory membrane formation in the presence of titanium (Ti) particles. Endotoxin-free titanium particles were injected into rabbit, prior to the insertion of a Ti6-Al-4-V sticks pre-coated with hydroxyapatite. Two days after operation, both distal femurs of the animal were exposed to 0.5 Gy X-ray irradiation. All ani-mals were euthanized 8 weeks after the operation. The PINP concentration was determined at day 0, 2, 4, and 8 weeks after operation. Trabecular morphology around the implants 8 weeks after operation was assessed using micro-CT, then the maximum push out force of simples was assessed using biomechanics test. Five samples in each group were chosen for bone histomorphology study without decalcification 8 weeks after operation. The results confirmed that the LDI can significantly improve ingrowth of bone into the prosthetic interface and stability of the prosthesis when there was no wear particles. Although promotion effects for bone formation induced by LDI can be counteracted by wear particles, LDI can significantly inhibit the interface membrane formation around the implant induced by wear particles. Based on these results, we conclude that LDI may be useful for enhancing the stability of prosthesis when there are no wear particles and for inhibiting the interface membrane formation during the early stage of aseptic loosening in the presence of wear particles. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1688-1696, 2016.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.23179 | DOI Listing |
J Hazard Mater
January 2025
Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:
Ecological impacts of tire wear particles (TWPs) on microbial communities and biogeochemical cycles in freshwater remain largely unknown. Here, we conducted a microcosm experiment to investigate interactions between the overlying water and sediment without and with TWPs addition in a rural vs. urban lake system.
View Article and Find Full Text PDFEnviron Res
January 2025
Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071.
Tire wear particles (TWPs) are considered the one of most significant non-exhaust particle emission sources from vehicles. However, there is a lack of research on the emission characteristics of TWPs based on typical driving information. In this work, we used a high-dynamic outside wheel test platform to conduct tire wear tests on multiple types of tires based on a novel test cycle and comprehensively analyzed the differences in their emission characteristics while considering various factors, such as front/rear tire and tire type.
View Article and Find Full Text PDFJ Clin Med
January 2025
Division of Orthopaedics and Traumatology, Cantonal Hospital Winterthur, 8401 Winterthur, Switzerland.
Wear particle reaction is present in every arthroplasty. Sometimes, this reaction may lead to formation of large pseudotumors. As illustrated in this case, the volume of the reaction may be out of proportion to the volume of the wear scar.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.
The abrasive wear performance of TiC particle-reinforced high-manganese steel matrix composites with a spherical hierarchical structure under moderate impact energy was investigated. In the composites, TiC particles (10 μm in diameter) were concentrated within discrete spherical composite regions with diameters of about 100 μm. Impact abrasive wear tests were conducted to evaluate the wear performance of the composites with different volume fractions (30%, 40%, and 50%) of TiC particles compared with the matrix and a uniformly distributed TiC particle composite.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VŠB Technical University of Ostrava, Ostrava, Czech Republic.
Higher-end science and technology facilitate the human community with a sophisticated life despite it curses by abundant pollution. The alarming demand for sustainability pressurizes the manufacturing sector to ensure sustainable manufacturing. Since Molybdenum di sulfide (MoS) and avocado oil are known solid and liquid lubricants respectively, hence, it is a worthwhile attempt to implement the bio-based degradable avocado oil enriched with nano Molybdenum di sulfide (nMoS) particles as a potential machining fluid for CNC-end milling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!