Glutamine drives glutathione synthesis and contributes to radiation sensitivity of A549 and H460 lung cancer cell lines.

Biochim Biophys Acta

Department of Environmental and Occupational Health, 4301 W. Markham Street Slot #820, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA. Electronic address:

Published: April 2016

Background: Increased glutamine uptake is known to drive cancer cell proliferation, making tumor cells glutamine-dependent. Glutamine provides additional carbon and nitrogen sources for cell growth. The first step in glutamine utilization is its conversion to glutamate by glutaminase (GLS). Glutamate is a precursor for glutathione synthesis, and we investigated the hypothesis that glutamine drives glutathione synthesis and thereby contributes to cellular defense systems.

Methods: The importance of glutamine for glutathione synthesis was studied in H460 and A549 lung cancer cell lines using glutamine-free medium and bis-2-(5-phenyl-acetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) a GLS inhibitor. Metabolic activities were determined by targeted mass spectrometry.

Results: A significant correlation between glutamine consumption and glutathione excretion was demonstrated in H460 and A549 tumor cells. Culturing in the presence of [(13)C5]glutamine demonstrated that by 12h >50% of excreted glutathione was derived from glutamine. Culturing in glutamine-free medium or treatment with BPTES, a GLS-specific inhibitor, reduced cell proliferation and viability and abolished glutathione excretion. Treatment with glutathione-ester prevented BPTES-induced cytotoxicity. Inhibition of GLS markedly radiosensitized the lung tumor cell lines, suggesting an important role of glutamine-derived glutathione in determining radiation sensitivity.

Conclusions: We demonstrate here for the first time that a significant amount of extracellular glutathione is directly derived from glutamine. This finding adds yet another important function to the already known glutamine dependence of tumor cells and probably tumors as well.

General Significance: Glutamine is essential for synthesis and excretion of glutathione to promote cell growth and viability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768472PMC
http://dx.doi.org/10.1016/j.bbagen.2016.01.021DOI Listing

Publication Analysis

Top Keywords

glutathione synthesis
16
cancer cell
12
cell lines
12
tumor cells
12
glutamine
11
glutathione
10
glutamine drives
8
drives glutathione
8
synthesis contributes
8
lung cancer
8

Similar Publications

Background: Anti-citrullinated peptide antibodies (ACPA)-negative (ACPA-) rheumatoid arthritis (RA) presents significant diagnostic and therapeutic challenges due to the absence of specific biomarkers, underscoring the need to elucidate its distinctive cellular and metabolic profiles for more targeted interventions.

Methods: Single-cell RNA sequencing data from peripheral blood mononuclear cells (PBMCs) and synovial tissues of patients with ACPA- and ACPA+ RA, as well as healthy controls, were analyzed. Immune cell populations were classified based on clustering and marker gene expression, with pseudotime trajectory analysis, weighted gene co-expression network analysis (WGCNA), and transcription factor network inference providing further insights.

View Article and Find Full Text PDF

Background: Testicular torsion is a critical urological emergency that can lead to testicular ischemia and significant tissue damage. Citrulline, a supplement known for enhancing cellular metabolism and mitigating oxidative stress and inflammation, has been explored for its protective effects against testicular injury resulting from torsion and detorsion in rat models.

Methods: This study involved 42 Wistar rats, divided into six groups: Sham, torsion/detorsion (T/D), and four groups receiving varying doses of Citrulline (300, 600, 900 ) and vitamin E (20 ).

View Article and Find Full Text PDF

Glioblastoma Multiforme (GBM) is one of the most aggressive types of brain tumor. GBM can modulate glutathione (GSH) levels and regulate cellular redox state, which can explain its high resistance to chemotherapeutic agents. Photodynamic therapy (PDT) is a selective, nontoxic, and minimally invasive treatment approved for many types of cancer.

View Article and Find Full Text PDF

Tuberculosis (TB) is a major health burden in Africa. Although TB is treatable, anti-TB drugs are associated with adverse drug reactions (ADRs), which are partly attributed to pharmacogenetic variation. The distribution of star alleles (haplotypes) influencing anti-TB drug metabolism is unknown in many African populations.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is marked by chronic hyperglycemia, gradually worsening β-cell failure, and insulin resistance. Glucotoxicity and oxidative stress cause β-cell failure by increasing reactive oxygen species (ROS) production, impairing insulin secretion, and disrupting transcription factors such as pancreatic and duodenal homeobox 1 (PDX-1) and musculoaponeurotic fibrosarcoma oncogene family A (MafA). Cluster determinant 36 (CD36), an essential glycoprotein responsible for fatty acid uptake, exacerbates oxidative stress and induces the apoptosis of β-cells under hyperglycemic conditions through pathways involving ceramide, thioredoxin-interacting protein (TXNIP), and Rac1-nicotinamide adenine dinucleotide phosphate oxidase (NOX)-mediated redoxosome formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!