A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anterior Insula Regulates Multiscale Temporal Organization of Sleep and Wake Activity. | LitMetric

AI Article Synopsis

  • The anterior insula (AI) plays a significant role in regulating sleep and wakefulness, as indicated by its strong connectivity with sleep-promoting brain regions.
  • In an experiment with rats, lesions to the AI resulted in decreased wakefulness and increased both REM and non-REM sleep compared to control rats.
  • AI-lesioned rats exhibited disrupted sleep-wake patterns and random locomotor activity, suggesting that dysfunction in the AI may contribute to sleep-wake disturbances observed in neurological disorders.

Article Abstract

The role of specific cortical regions in sleep-regulating circuits is unclear. The anterior insula (AI) has strong reciprocal connectivity with wake and sleep-promoting hypothalamic and brainstem regions, and we hypothesized that the AI regulates patterns of sleep and wakefulness. To test this hypothesis, we lesioned the AI in rats (n = 8) and compared sleep, wake, and activity regulation in these animals with nonlesioned controls (n = 8) with 24-h sleep recordings and chronic infrared activity monitoring. Compared to controls, animals with AI lesions had decreased wakefulness and increased rapid eye movement (REM) sleep and non-REM (NREM) sleep. AI-lesioned animals had shorter wake bouts, especially during the active dark phase. AI-lesioned animals also had more transitions from NREM to REM sleep, especially during the inactive light phase. Chronic infrared monitoring revealed that AI-lesioned animals also had a disturbed temporal organization of locomotor activity at multiple time scales with more random activity fluctuations from 4 to 12 h despite intact circadian rhythms. These results suggest that the AI regulates sleep and activity and contributes to the regulation of sleep and motor behavior rhythmicity across multiple time scales. Dysfunction of the AI may underlie changes in sleep-wake patterns in neurological diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803073PMC
http://dx.doi.org/10.1177/0748730415627035DOI Listing

Publication Analysis

Top Keywords

ai-lesioned animals
12
sleep
9
anterior insula
8
temporal organization
8
sleep wake
8
wake activity
8
chronic infrared
8
rem sleep
8
multiple time
8
time scales
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: