In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes.

J Proteomics

Department of Pharmacy, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala, Sweden.

Published: March 2016

Hepatocytes play a pivotal role in human homeostasis. They are essential in regulation of glucose and lipid levels in blood and play a central role in metabolism of amino acids, lipids, drugs and xenobiotic-compounds. In addition, hepatocytes produce a major portion of proteins circulating in the blood. Hepatocytes were isolated from liver tissue obtained from surgical resections. Proteins were extracted and processed using filter aided sample preparation protocol and were analyzed by LC-MS/MS using high accuracy mass spectrometry. Proteins were quantified by the 'Total Protein Approach' and 'Proteomic Ruler'. We report a comprehensive proteomic analysis of purified human hepatocytes and the human hepatoma cell line HepG2. The complete dataset comprises 9400 proteins and provides a comprehensive and quantitative depiction of the proteomes of hepatocytes and HepG2 cells at the protein titer and copy number dimensions. We describe basic cell organization and in detail energy metabolism pathways and metabolite transport. We provide quantitative insights into protein synthesis and drug and xenobiotics catabolism. Our data delineate differences between the native human hepatocytes and HepG2 cells by providing for the first time quantitative data at protein concentrations and copy numbers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2016.01.016DOI Listing

Publication Analysis

Top Keywords

hepatoma cell
8
cell hepg2
8
proteomes hepatocytes
8
human hepatocytes
8
hepatocytes hepg2
8
hepg2 cells
8
hepatocytes
6
human
5
in-depth quantitative
4
quantitative analysis
4

Similar Publications

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy by enhancing the antitumor immune response. This case describes an 80-year-old male with synchronous multiple primary malignancies (MPMs), including lung metastatic hepatocellular carcinoma (HCC), and non-small cell lung carcinoma (NSCLC), and brain metastatic urothelial carcinoma, who was treated with dual ICI therapy.

Case Presentation: The patient, with a history of diabetes, hypertension, dyslipidaemia, well-differentiated neuroendocrine duodenal tumors and micronodular exogenous cirrhosis (Child-Pugh class A), presented with a non-invasive bladder carcinoma (pT1N0M0) resected endoscopically in December 2022.

View Article and Find Full Text PDF

Aldo-keto reductase family 1 member B10 (AKR1B10) is a member of the AKR1B subfamily. It is mainly found in cytoplasm, and it is typically expressed in the stomach and intestines. Given that its expression is low or absent in other tissues, AKR1B10 is a potential diagnostic and therapeutic biomarker for various digestive system diseases.

View Article and Find Full Text PDF

Objective: Long non-coding RNAs (lncRNAs) participate in the formation, progression, and metastasis of cancer. This study aimed to explore the roles of the lncRNA ST8SIA6 antisense RNA 1 (ST8SIA6-AS1) in tumorigenesis and elucidate the underlying molecular mechanism of its upregulation in hepatocellular carcinoma (HCC).

Material And Methods: A total of 56 in-house pairs of HCC tissues were examined, and ST8SIA6-AS1 levels were determined through real-time polymerase chain reaction (PCR).

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the common malignant tumors. Complement system has become a new focus of cancer research by changing the biological behavior of cancer cells to influence the growth of cancer. Recent studies reported the complement C5a-C5aR1 axis can promote the malignant phenotype of multiple tumors through various signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!