First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries.

J Am Chem Soc

Computational NanoBio Technology Laboratory, School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States.

Published: February 2016

AI Article Synopsis

  • The study examines the thermodynamics and redox potentials of seven quinone derivatives to evaluate their effectiveness as positive electrodes in lithium-ion batteries.
  • Using density functional theory (DFT), researchers found that lithium atoms primarily bond with carbonyl groups in the quinones, and modifying the chemical structure can enhance redox properties.
  • The research concludes that factors like solvation effects and the quantity of carbonyl groups significantly influence the electrochemical performance of these quinone derivatives during discharging.

Article Abstract

The Li-binding thermodynamics and redox potentials of seven different quinone derivatives are investigated to determine their suitability as positive electrode materials for lithium-ion batteries. First, using density functional theory (DFT) calculations on the interactions between the quinone derivatives and Li atoms, we find that the Li atoms primarily bind with the carbonyl groups in the test molecules. Next, we observed that the redox properties of the quinone derivatives can be tuned in the desired direction by systematically modifying their chemical structures using electron-withdrawing functional groups. Further, DFT-based investigations of the redox potentials of the Li-bound quinone derivatives provide insights regarding the changes induced in their redox properties during the discharging process. The redox potential decreases as the number of bound Li atoms is increased. However, we found that the functionalization of the quinone derivatives with carboxylic acids can improve their redox potential as well as their charge capacity. Through this study, we also determined that the cathodic activity of quinone derivatives during the discharging process relies strongly on the solvation effect as well as on the number of carbonyl groups available for further Li binding.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5b13279DOI Listing

Publication Analysis

Top Keywords

quinone derivatives
28
redox properties
12
density functional
8
functional theory
8
thermodynamics redox
8
properties quinone
8
lithium-ion batteries
8
redox potentials
8
carbonyl groups
8
discharging process
8

Similar Publications

Three bacterial strains, designated FZUC8N2.13, FBOR7N2.3 and FZUR7N2.

View Article and Find Full Text PDF

Description of six novel species sp. nov., sp. nov., sp. nov., sp. nov., sp. nov. and sp. nov., isolated from mangrove ecosystem.

Int J Syst Evol Microbiol

January 2025

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.

Six Gram-stain-positive and rod-shaped strains, designated FJAT-51614, FJAT-51639, FJAT-52054, FJAT-52991, FJAT-53654 and FJAT-53711, were isolated from a mangrove ecosystem. The condition for growth among the strains varied (pH ranging 5.0-11.

View Article and Find Full Text PDF

sp. nov. and sp. nov., two bacteria isolated from marine sediment in the East China Sea.

Int J Syst Evol Microbiol

January 2025

Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, PR China.

Two Gram-stain-negative, curved-rod-shaped, non-motile and aerobic bacteria W6 and I13 were isolated from marine sediment samples collected from Meishan Island located in the East China Sea. Catalase and oxidase activities and hydrolysis of Tween 40, 60 and 80 were positive for both strains, while nitrate reduction, indole production, methyl red reaction and HS production were negative. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains W6 and I13 formed distinct phylogenetic lineages within the genera and , respectively.

View Article and Find Full Text PDF

Photooxidation and Cleavage of Ethynylated 9,10-Dimethoxyanthracenes with Acid-Labile Ether Bonds.

J Org Chem

January 2025

Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts, 02155, United States.

This paper describes a series of 12 9,10-dimethoxyanthracene derivatives functionalized with a range of electronically diverse ethynyl substituents at the 2 and 6 positions, aimed at tuning their optoelectronic properties and reactivity with singlet oxygen (O). Optical spectroscopy, cyclic voltammetry, and density functional theory calculations reveal that the ethynyl groups decrease the HOMO-LUMO gaps in these acenes. Notably, bis(dimethylanilineethynyl) substituents increase the wavelength of absorbance onset by over 60 nm compared to 9,10-dimethoxyanthracene (DMA).

View Article and Find Full Text PDF

p-Phenylenediamines (PPDs) are widely used as antioxidants in numerous rubber products to prevent or delay oxidation and corrosion. However, their derived quinones (PPD-Qs), generated through reactions with ozone, are ubiquitous in the environment and raise significant health and toxicity concerns. This review summarizes the current state of knowledge on environmental distribution and fate, human exposure, and biological toxicity of PPDs and PPD-Qs, and makes recommendations for future research directions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!