The volumetric quantification of brain structures is of great interest in pediatric populations because it allows the investigation of different factors influencing neurodevelopment. FreeSurfer and FSL both provide frequently used packages for automatic segmentation of brain structures. In this study, we examined the accuracy and consistency of those two automated protocols relative to manual segmentation, commonly considered as the "gold standard" technique, for estimating hippocampus and amygdala volumes in a sample of preadolescent children aged between 6 to 11 years. The volumes obtained with FreeSurfer and FSL-FIRST were evaluated and compared with manual segmentations with respect to volume difference, spatial agreement and between- and within-method correlations. Results highlighted a tendency for both automated techniques to overestimate hippocampus and amygdala volumes, in comparison to manual segmentation. This was more pronounced when using FreeSurfer than FSL-FIRST and, for both techniques, the overestimation was more marked for the amygdala than the hippocampus. Pearson correlations support moderate associations between manual tracing and FreeSurfer for hippocampus (right r=0.69, p<0.001; left r=0.77, p<0.001) and amygdala (right r=0.61, p<0.001; left r=0.67, p<0.001) volumes. Correlation coefficients between manual segmentation and FSL-FIRST were statistically significant (right hippocampus r=0.59, p<0.001; left hippocampus r=0.51, p<0.001; right amygdala r=0.35, p<0.001; left amygdala r=0.31, p<0.001) but were significantly weaker, for all investigated structures. When computing intraclass correlation coefficients between manual tracing and automatic segmentation, all comparisons, except for left hippocampus volume estimated with FreeSurfer, failed to reach 0.70. When looking at each method separately, correlations between left and right hemispheric volumes showed strong associations between bilateral hippocampus and bilateral amygdala volumes when assessed using manual segmentation or FreeSurfer. These correlations were significantly weaker when volumes were assessed with FSL-FIRST. Finally, Bland-Altman plots suggest that the difference between manual and automatic segmentation might be influenced by the volume of the structure, because smaller volumes were associated with larger volume differences between techniques. These results demonstrate that, at least in a pediatric population, the agreement between amygdala and hippocampus volumes obtained with automated FSL-FIRST and FreeSurfer protocols and those obtained with manual segmentation is not strong. Visual inspection by an informed individual and, if necessary, manual correction of automated segmentation outputs are important to ensure validity of volumetric results and interpretation of related findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243960 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2016.01.038 | DOI Listing |
Drug Des Devel Ther
January 2025
Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
Objective: Neuronal damage is criminal to cognitive dysfunction, closely related to endoplasmic reticulum stress (ERS). However, due to the pathogenesis of endotoxin-induced long-term cognitive dysfunction is not fully clarified, there is still a lack of effective treatment. This study was conducted to explore the protective effects and mechanism of rosmarinic acid (RA) against ERS in endotoxin-induced cognitive dysfunction in mice and neuronal injury in cells.
View Article and Find Full Text PDFSci Data
January 2025
Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
Object recognition is fundamental to how we interact with and interpret the world around us. The human amygdala and hippocampus play a key role in object recognition, contributing to both the encoding and retrieval of visual information. Here, we recorded single-neuron activity from the human amygdala and hippocampus when neurosurgical epilepsy patients performed a one-back task using naturalistic object stimuli.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.
Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.
View Article and Find Full Text PDFDebilitating anxiety is pervasive in the modern world. Choices to approach or avoid are common in everyday life and excessive avoidance is a cardinal feature of all anxiety disorders. Here, we used intracranial EEG to define a distributed prefrontal-limbic circuit dynamics supporting approach and avoidance.
View Article and Find Full Text PDFBio Protoc
January 2025
Department of Biological Sciences, Rutgers University, Newark, NJ, USA.
Neurons are highly polarized cells, with axons that may innervate distant target regions. In the brain, basal forebrain cholinergic neurons (BFCNs) possess extensive axons that project to several target regions such as the cortex, hippocampus, and amygdala, and may be exposed to a specific microenvironment in their axon targets that may have retrograde effects on neuronal health. Interestingly, BFCNs express the pan-neurotrophin receptor p75NTR throughout life while also concomitantly co-expressing all Trk receptors, making them capable of responding to both mature and precursor neurotrophins to promote survival or apoptosis, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!