Phylogeography and evolutionary patterns in Sporothrix spanning more than 14 000 human and animal case reports.

Persoonia

CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.; Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.; Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Beijing, China.; Department of Cell Biology, Biological Sciences Institute, University of Brasília, Brasília, Distrito Federal, Brazil.; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands; Department of Basic Biology, University of Paraná, Curitiba, Brazil.

Published: December 2015

Pathology to vertebrate hosts has emerged repeatedly in the order Ophiostomatales. Occasional infections have been observed in Sporothrix mexicana at a low level of virulence, while the main pathogenic species cluster in a derived clade around S. schenckii s.str. In this paper, phylogeny and epidemiology of the members of this clade were investigated for 99 clinical and 36 environmental strains using four genetic loci, viz. rDNA ITS and partial CAL, TEF1, and TEF3; data are compared with amplified fragment length polymorphism (AFLP) genotyping. The four main species of the pathogenic clade were recognised. The species proved to show high degrees of endemicity, which enabled interpretation of literature data where live material or genetic information is lacking. The clade of four species comprised nine subclusters, which often had limited geographic distribution and were separate from each other in all partitions, suggesting low degrees of interbreeding between populations. In contrast, S. globosa exhibited consistent global distribution of identical AFLP types, suggesting another type of dispersal. Sporothrix brasiliensis is known to be involved in an expanding zoonosis and transmitted by cats, whereas S. globosa infections originated from putrid plant material, causing a sapronosis. Sporothrix schenckii s.str., the most variable species within the clade, also had a plant origin, with ecological similarities to that of S. globosa. A hypothesis was put forward that highly specific conditions in the plant material are required to promote the growth of Sporothrix. Fermented, self-heated plant debris may stimulate the thermodependent yeast-like invasive form of the fungus, which facilitates repeated infection of mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4713101PMC
http://dx.doi.org/10.3767/003158515X687416DOI Listing

Publication Analysis

Top Keywords

schenckii sstr
8
plant material
8
sporothrix
5
species
5
clade
5
phylogeography evolutionary
4
evolutionary patterns
4
patterns sporothrix
4
sporothrix spanning
4
spanning 000
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!