Translational control mediated by hnRNP K links NMHC IIA to erythroid enucleation.

J Cell Sci

Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany

Published: March 2016

Post-transcriptional regulation is crucial for structural and functional alterations in erythropoiesis. Enucleation of erythroid progenitors precedes reticulocyte release into circulation. In enucleated cells, reticulocyte 15-lipoxygenase (r15-LOX, also known as ALOX15) initiates mitochondria degradation. Regulation of r15-LOX mRNA translation by hnRNP K determines timely r15-LOX synthesis in terminal maturation. K562 cells induced for erythroid maturation recapitulate enucleation and mitochondria degradation. HnRNP K depletion from maturing K562 cells results in enhanced enucleation, which even occurs independently of maturation. We performed RIP-Chip analysis to identify hnRNP K-interacting RNAs comprehensively. Non-muscle myosin heavy chain (NMHC) IIA (also known as MYH9) mRNA co-purified with hnRNP K from non-induced K562 cells, but not from mature cells. NMHC IIA protein increase in erythroid maturation at constant NMHC IIA mRNA levels indicates post-transcriptional regulation. We demonstrate that binding of hnRNP K KH domain 3 to a specific sequence element in the NMHC IIA mRNA 3'UTR mediates translation regulation in vitro Importantly, elevated NMHC IIA expression results in erythroid-maturation-independent enucleation as shown for hnRNP K depletion. Our data provide evidence that hnRNP-K-mediated regulation of NMHC IIA mRNA translation contributes to the control of enucleation in erythropoiesis.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.174995DOI Listing

Publication Analysis

Top Keywords

nmhc iia
28
k562 cells
12
iia mrna
12
post-transcriptional regulation
8
mitochondria degradation
8
mrna translation
8
erythroid maturation
8
hnrnp depletion
8
hnrnp
7
nmhc
7

Similar Publications

Pseudorabies virus usurps non-muscle myosin heavy chain IIA to dampen viral DNA recognition by cGAS for antagonism of host antiviral innate immunity.

J Virol

May 2024

Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China.

Alphaherpesvirus pseudorabies virus (PRV) causes severe economic losses to the global pig industry and has garnered increasing attention due to its broad host range including humans. PRV has developed a variety of strategies to antagonize host antiviral innate immunity. However, the underlying mechanisms have not been fully elucidated.

View Article and Find Full Text PDF

Myosin 9 and N-glycans jointly regulate human papillomavirus entry.

J Biol Chem

February 2024

Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Sanya Oceanographic Institute, Ocean University of China, Sanya, China. Electronic address:

Persistent high-risk HPV infection is closely associated with cervical cancer development, and there is no drug targeting HPV on the market at present, so it is particularly important to understand the interaction mechanism between HPV and the host which may provide the novel strategies for treating HPV diseases. HPV can hijack cell surface heparan sulfate proteoglycans (HSPGs) as primary receptors. However, the secondary entry receptors for HPV remain elusive.

View Article and Find Full Text PDF

Mechanotransduction in response to ECM stiffening impairs cGAS immune signaling in tumor cells.

Cell Rep

October 2023

School of Life Science, Chongqing University, Chongqing 400044, P.R. China; 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China. Electronic address:

The tumor microenvironment (TME) plays decisive roles in disabling T cell-mediated antitumor immunity, but the immunoregulatory functions of its biophysical properties remain elusive. Extracellular matrix (ECM) stiffening is a hallmark of solid tumors. Here, we report that the stiffened ECM contributes to the immunosuppression in TME via activating the Rho-associated coiled-coil-containing protein kinase (ROCK)-myosin IIA-filamentous actin (F-actin) mechanosignaling pathway in tumor cells to promote the generation of TRIM14-scavenging nonmuscle myosin heavy chain IIA (NMHC-IIA)-F-actin stress fibers, thus accelerating the autophagic degradation of cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) to deprive tumor cyclic GMP-AMP (cGAMP) and further attenuating tumor immunogenicity.

View Article and Find Full Text PDF

HBXIP blocks myosin-IIA assembly by phosphorylating and interacting with NMHC-IIA in breast cancer metastasis.

Acta Pharm Sin B

March 2023

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.

Tumor metastasis depends on the dynamic balance of the actomyosin cytoskeleton. As a key component of actomyosin filaments, non-muscle myosin-IIA disassembly contributes to tumor cell spreading and migration. However, its regulatory mechanism in tumor migration and invasion is poorly understood.

View Article and Find Full Text PDF

In contrast to molecular changes associated with increased inflammatory responses, little is known about intracellular counter-regulatory mechanisms that control signaling cascades associated with functional responses of neutrophils. Active RHO GTPases are typically considered as effector proteins that elicit cellular responses. Strikingly, we show here that RHOH, although being constitutively GTP-bound, limits neutrophil degranulation and the formation of neutrophil extracellular traps (NETs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!