Pancreatic ductal adenocarcinoma (PDAC) is likely the most aggressive and therapy-resistant of all cancers. The aim of this study was to investigate the emerging technology of matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) as a powerful tool to study drug delivery and spatial tissue distribution in PDAC. We utilized an established genetically engineered mouse model of spontaneous PDAC to examine the distribution of the small-molecule inhibitor erlotinib in healthy pancreas and PDAC. MALDI IMS was utilized on sections of single-dose or long-term-treated mice to measure drug tissue distribution. Histologic and statistical analyses were performed to correlate morphology, drug distribution, and survival. We found that erlotinib levels were significantly lower in PDAC compared with healthy tissue (P = 0.0078). Survival of long-term-treated mice did not correlate with overall levels of erlotinib or with overall histologic tumor grade but did correlate both with the percentage of atypical glands in the cancer (P = 0.021, rs = 0.59) and the level of erlotinib in those atypical glands (P = 0.019, rs = 0.60). The results of this pilot study present MALDI IMS as a reliable technology to study drug delivery and spatial distribution of compounds in a preclinical setting and support drug imaging-based translational approaches. Mol Cancer Ther; 15(5); 1145-52. ©2016 AACR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-15-0165 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.
ACS Biomater Sci Eng
January 2025
Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
Herein, fluorescent calcium carbonate nanoclusters encapsulated with methotrexate (Mtx) and surface functionalized with chitosan (25 nm) (@Calmat) have been developed for the imaging and treatment of triple-negative breast cancer (TNBC). These biocompatible, pH-sensitive nanoparticles demonstrate significant potential for targeted therapy and diagnostic applications. The efficacy of nanoparticles (NPs) was evaluated in MDA-MB-231 TNBC cell lines.
View Article and Find Full Text PDFClin Toxicol (Phila)
January 2025
National Poisons Information Service, Cardiff Unit, University Hospital Llandough, Penarth, UK.
Introduction: Ibogaine is a psychoactive alkaloid derived from the root bark of the West African shrub . It is not licensed in the United Kingdom but is used by individuals to alleviate drug or alcohol use.
Methods: A retrospective analysis of telephone enquiries involving ibogaine between 1 January 2012 and 31 December 2022 to the United Kingdom National Poisons Information Service was performed.
Front Pharmacol
January 2025
College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Background: (BC), also named Niuhuang in Chinese, is utilized as a resuscitation drug in Traditional Chinese Medicine (TCM) for the treatment of neurological disorders. Ischemic stroke (IS) is a significant global public health issue that currently lacks safe and effective therapeutic drugs. Ongoing efforts are focused on identifying effective treatment strategies from Traditional, Complementary, and Integrative Medicine.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.
Introduction: 7,8-Dihydroxyflavone (7,8-DHF) is a promising translational therapy in several brain injury models, including the neonatal hypoxia-ischemia (HI) model in mice. However, the neuroprotective effect of 7,8-DHF was only observed in female, but not male, neonatal mice with HI brain injury. It is unknown whether HI-induced physiological changes affect brain distribution of 7,8-DHF differently for male versus female mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!