Using Key Distance to Clarify a Theory on the SNARC.

Perception

Department of Experimental Cognitive Sciences, Institute of Computer Sciences, University of T übingen, T übingen, Germany.

Published: April 2016

The most prominent explanation for the spatial numerical association of response codes (SNARC) effect is the direct mapping account (DMA). The DMA assumes that (a) numbers are represented on a mental number line, (b) this mental number line is mapped to external space, and (c) the better the mapping location corresponds to the response location, the faster the response. The DMA leaves open whether a variation of response locations can (ceteris paribus) influence the location to which numbers are mapped in external space. In order to investigate this question, we varied response key distance during a standard parity judgment and a magnitude judgment task. We found that even drastic manipulations of response key distance did not modulate the SNARC effect. Power and meta-analyses show that this null effect is not due to insufficient statistical power or a poor experimental setup. Thus, our results indicate that, in order for the DMA to explain the SNARC effect, it must assume that the mapping from the mental number line to external space is anchored to response location. For future research, our results suggest that it is not necessary to control the horizontal separation of the response keys in basic SNARC experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0301006615616754DOI Listing

Publication Analysis

Top Keywords

key distance
12
mental number
12
external space
12
response
8
mapped external
8
response location
8
response key
8
snarc
5
distance clarify
4
clarify theory
4

Similar Publications

Aims: We aimed to establish one-minute sit-to-stand test (1-min STST) cut-off values that align with the guideline-recommended six-minute walk test (6MWT) thresholds (165m and 440m) for one-year mortality risk stratification in pulmonary hypertension (PH) patients. Furthermore, we aimed to compare clinical characteristics and long-term mortality among patients stratified by these proposed 1-min STST cut-offs.

Methods: All patients performed the 1-min STST and 6MWT.

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

The breadth and depth of plant leaf metabolomes have been implicated in key interactions with plant enemies aboveground. In particular, divergence in plant species chemical composition-amongst neighbors, relatives, or both-is often suggested as a means of escape from insect herbivore enemies. Plants also experience strong pressure from enemies such as belowground pathogens; however, little work has been carried out to examine the evolutionary trajectories of species' specialized chemistries in both roots and leaves.

View Article and Find Full Text PDF

The characteristics of heartwood and sapwood not only reflect tree growth and site quality but also provide insights into habitat changes. This study examines the natural Oliv. forest in the Arghan section of the lower Tarim River, comparing the heartwood and sapwood characteristics of at different distances from the river, as well as at varying trunk heights and diameters at breast height (DBH).

View Article and Find Full Text PDF

Flexible Vibration Sensors with Omnidirectional Sensing Enabled by Femtosecond Laser-Assisted Fabrication.

Polymers (Basel)

January 2025

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.

Vibration sensors are integral to a multitude of engineering applications, yet the development of low-cost, easily assembled devices remains a formidable challenge. This study presents a highly sensitive flexible vibration sensor, based on the piezoresistive effect, tailored for the detection of high-dynamic-range vibrations and accelerations. The sensor's design incorporates a polylactic acid (PLA) housing with cavities and spherical recesses, a polydimethylsiloxane (PDMS) membrane, and electrodes that are positioned above.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!