Background: Functional metagenomics is a promising strategy for the exploration of the biocatalytic potential of microbiomes in order to uncover novel enzymes for industrial processes (e.g. biorefining or bleaching pulp). Most current methodologies used to screen for enzymes involved in plant biomass degradation are based on the use of single substrates. Moreover, highly diverse environments are used as metagenomic sources. However, such methods suffer from low hit rates of positive clones and hence the discovery of novel enzymatic activities from metagenomes has been hampered.
Results: Here, we constructed fosmid libraries from two wheat straw-degrading microbial consortia, denoted RWS (bred on untreated wheat straw) and TWS (bred on heat-treated wheat straw). Approximately 22,000 clones from each library were screened for (hemi)cellulose-degrading enzymes using a multi-chromogenic substrate approach. The screens yielded 71 positive clones for both libraries, giving hit rates of 1:440 and 1:1,047 for RWS and TWS, respectively. Seven clones (NT2-2, T5-5, NT18-17, T4-1, 10BT, NT18-21 and T17-2) were selected for sequence analyses. Their inserts revealed the presence of 18 genes encoding enzymes belonging to twelve different glycosyl hydrolase families (GH2, GH3, GH13, GH17, GH20, GH27, GH32, GH39, GH53, GH58, GH65 and GH109). These encompassed several carbohydrate-active gene clusters traceable mainly to Klebsiella related species. Detailed functional analyses showed that clone NT2-2 (containing a beta-galactosidase of ~116 kDa) had highest enzymatic activity at 55 °C and pH 9.0. Additionally, clone T5-5 (containing a beta-xylosidase of ~86 kDa) showed > 90% of enzymatic activity at 55 °C and pH 10.0.
Conclusions: This study employed a high-throughput method for rapid screening of fosmid metagenomic libraries for (hemi)cellulose-degrading enzymes. The approach, consisting of screens on multi-substrates coupled to further analyses, revealed high hit rates, as compared with recent other studies. Two clones, 10BT and T4-1, required the presence of multiple substrates for detectable activity, indicating a new avenue in library activity screening. Finally, clones NT2-2, T5-5 and NT18-17 were found to encode putative novel thermo-alkaline enzymes, which could represent a starting point for further biotechnological applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730625 | PMC |
http://dx.doi.org/10.1186/s12864-016-2404-0 | DOI Listing |
Bioorg Chem
January 2025
Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal, Academy of Higher Education, Manipal, Karnataka 576104, India.
Fragment-Based Drug Discovery (FBDD) has revolutionized drug discovery by overcoming the challenges of traditional methods like combinatorial chemistry and high-throughput screening (HTS). Leveraging small, low-molecular-weight fragments, FBDD achieves higher hit rates, reduced screening costs, and faster development timelines for clinically relevant drug candidates. This review explores FBDD's core principles, innovative methodologies, and its success in targeting diverse protein classes, including previously "undruggable" targets.
View Article and Find Full Text PDFJ Atten Disord
January 2025
School of Psychology, University of Nottingham, UK.
Objective: To compare the effect of motivational features on sustained attention in children born very preterm and at term.
Method: EEG was recorded while 34 8-to-11-year-old children born very preterm and 34 term-born peers completed two variants of a cued continuous performance task (CPT-AX); a standard CPT-AX with basic shape stimuli, and structurally similar variant, with a storyline, familiar characters, and feedback.
Results: Higher hit rates, quicker response times and larger event-related potential (ERP) amplitudes were observed during the motivating, compared with the standard, task.
Acta Pharmacol Sin
January 2025
Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method.
View Article and Find Full Text PDFJ Neurol
January 2025
Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome, Italy.
Objectives: To determine whether extending anti-CGRP mAb treatment beyond 3 years influences migraine course, we analyzed migraine frequency during the first month of treatment discontinuation following three 12-month treatment cycles (Ts).
Methods: This multicenter, prospective, real-world study enrolled 212 patients with high-frequency episodic migraine (HFEM) or chronic migraine (CM) who completed three consecutive Ts of subcutaneous anti-CGRP mAbs. Discontinuation periods (D1, D2, D3) were defined as the first month after T1, T2, and T3, respectively.
J Clin Med
January 2025
School of Medicine, University of Liverpool, Liverpool L69 3GE, UK.
Heart Failure (HF) is a prevalent condition which places a substantial burden on healthcare systems worldwide. Medical management implemented with exercise training (ET) plays a role in prognostic and functional capacity improvement. The aim of this review is to determine the effect of exercise training (ET) on HFpEF and HFrEF patients as well as exercise modality recommendations in frail and sarcopenic subpopulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!