Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740180 | PMC |
http://dx.doi.org/10.1038/ncomms10427 | DOI Listing |
In this Letter, we investigate the binding mechanism and motion dynamics of the bound state consisting of two pure-quartic solitons (PQSs) with unequal intensities and find that their movement occurs as an entity under the Raman self-frequency shift. By calculating the forces that induce the relative motion between the unequal PQSs, we derive the balanced conditions for maintaining a near-constant separation and the constant phase profile between them. The predictions are validated by the numerical simulations.
View Article and Find Full Text PDFWe analytically derive the formulas of the threshold pump intensity and the range of possible detuning for the initiation of the pure quartic platicon (PQP) in the presence of multiphoton absorption, free-carrier absorption, and free-carrier dispersion. Theoretical investigations demonstrate a feasible approach for the excitation of PQP in the normal quartic dispersion regime via the free-carrier effects in platforms such as silicon, germanium, and their derivates. Due to the time-variant nonlinear loss related to free-carrier absorption or additional nonlinear detuning induced by free-carrier plasma dispersion, PQP can be generated through turn-key or laser frequency scanning schemes in both the three- and four-photon absorption regimes.
View Article and Find Full Text PDFWe propose a new, to the best of our knowledge, class of soliton based on the interaction of parity-time (PT) symmetric nonlinearity and quartic dispersion or diffraction. This novel kind of soliton is related to the recently discovered pure-quartic solitons (PQS), which arise from the balance of the Kerr nonlinearity and quartic dispersion, through a complex coordinate shift. We find that the PT-symmetric pure-quartic soliton presents important differences with respect to its Hermitian (Kerr) counterpart, including a nontrivial phase structure, a skewed spectral intensity, and a higher power for the same propagation constant.
View Article and Find Full Text PDFWe investigate spontaneous symmetry- and antisymmetry-breaking bifurcations of solitons in a nonlinear dual-core waveguide with the pure-quartic dispersion and Kerr nonlinearity. Symmetric, antisymmetric, and asymmetric pure-quartic solitons (PQSs) are found, and their stability domains are identified. The bifurcations for both the symmetric and antisymmetric PQSs are of the supercritical type (alias phase transitions of the second kind).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!