A highly efficient Cu2 ZnSn(S,Se)4 (CZTSSe)-based thin-film solar cell (9.9%) was prepared using an electrochemical deposition method followed by thermal annealing. The Cu-Zn-Sn alloy films was grown on a Mo-coated glass substrate using a one-pot electrochemical deposition process, and the metallic precursor films was annealed under a mixed atmosphere of S and Se to form CZTSSe thin films with bandgap energies ranging from 1.0 to 1.2 eV. The compositional modification of the S/(S+Se) ratio shows a trade-off effect between the photocurrent and photovoltage, resulting in an optimum bandgap of roughly 1.14 eV. In addition, the increased S content near the p-n junction reduces the dark current and interface recombination, resulting in a further enhancement of the open-circuit voltage. As a result of the compositional and interfacial modification, the best CZTSSe-based thin-film solar cell exhibits a conversion efficiency of 9.9%, which is among the highest efficiencies reported so far for electrochemically deposited CZTSSe-based thin-film solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201501256DOI Listing

Publication Analysis

Top Keywords

thin-film solar
16
electrochemical deposition
12
cztsse-based thin-film
12
compositional interfacial
8
interfacial modification
8
cu2 znsnsse4
8
solar cells
8
prepared electrochemical
8
solar cell
8
modification cu2
4

Similar Publications

Towards all inorganic antimony sulphide semitransparent solar cells.

Sci Rep

January 2025

Laboratory for Thin Film Energy Materials, Department of Materials and Environmental Technology, School of Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia.

NiO, a wide band gap hole-transporting material (HTM), is gaining attention in photovoltaics due to its optical transparency, chemical stability, and favourable band alignment with absorber. This study uses NiO nanoparticle-based HTM in semi-transparent SbS solar cells via a simple chemical precipitation method. We optimised NiO layer by varying precursor solution concentration and studied its impact on optical and structural properties, composition of nanoparticles and subsequent effect on the performance of semi-transparent SbS solar cell.

View Article and Find Full Text PDF

Antimony selenide (SbSe) shows promise for photovoltaics due to its favorable properties and low toxicity. However, current SbSe solar cells exhibit efficiencies significantly below their theoretical limits, primarily due to interface recombination and non-optimal device architectures. This study presents a comprehensive numerical investigation of SbSe thin-film solar cells using SCAPS-1D simulation software, focusing on device architecture optimization and interface engineering.

View Article and Find Full Text PDF

The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators.

View Article and Find Full Text PDF

This study presents a comprehensive evaluation of Copper Indium Gallium Selenide (CIGS) solar technology, benchmarked against crystalline silicon (c-Si) PERC PV technology. Utilizing a newly developed energy yield model, we analyzed the performance of CIGS in various environmental scenarios, emphasizing its behavior in low-light conditions and under different temperature regimes. The model demonstrated high accuracy with improved error metrics of normalized mean bias error (nMBE) ~ 1% and normalized root mean square error (nRMSE) of  ~ 8%-20% in simulating rack mounted setup and integrated PV systems.

View Article and Find Full Text PDF

In this study, we explore the photovoltaic performance of an innovative high efficiency heterostructure utilizing the quaternary semiconductor CuFeSnSe (CFTSe). This material features a kesterite symmetrical structure and is distinguished by its non-toxic nature and abundant presence in the earth's crust. Utilizing the SCAPS simulator, we explore various electrical specifications such as short circuit current (J), open circuit voltage (V), the fill factor (FF), and power conversion efficiency (PCE) were explored at a large range of thicknesses, and the acceptor carrier concentration doping (N).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!