Major advances in the neuroscientific understanding of alcohol actions have so far not translated into measurably improved clinical outcomes in alcoholism. Future treatment development should be guided by accumulating insights into a diverse range of biological mechanisms that maintain the pathophysiology of alcoholism in different individuals, but also at different points in time within any given patient. This biological diversity calls for the development and use of biological markers predictive of treatment response in the individual case, at the specific stage of the disease, here called "theragnostics." As novel therapeutic mechanisms and molecules targeting these mechanisms are discovered, the use of theragnostics will be critical for their successful clinical development, as well as their optimal subsequent clinical use. During clinical development, lest theragnostics are utilized, efficacy signals will risk remaining undetected when diluted in study populations that are not appropriately selected. Similarly, for treatments that reach approval, clinical acceptance, and optimal use will require the proper identification of responsive patients. Here, we discuss desirable properties of theragnostic biomarkers in alcohol addiction using two examples: alcohol-induced activation of brain reward circuitry as assessed using positron emission tomography of functional magnetic resonance imaging; and central glutamate tone, as assessed using MR spectroscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.pbr.2015.07.023 | DOI Listing |
Lancet Oncol
January 2025
Department of Radiology and Center for Systems Biology, Massachusetts General Brigham, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA. Electronic address:
Sci Rep
December 2024
IRCCS SYNLAB SDN, Naples, 80143, Italy.
LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
Laboratory of Physiology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Unlabelled: Critical states present scale-free dynamics, optimizing neuronal complexity and serving as a potential biomarker in cognitively impaired patients. We explored electroencephalogram (EEG) criticality in amnesic Mild Cognitive Impairment patients with clinical improvement in working memory, verbal memory, verbal fluency and overall executive functions after the completion of a 6-month prospective memory training. We compared "before" and "after" stationary resting-state EEG records of right-handed MCI patients (n = 17; 11 females), using the method of critical fluctuations and Haar wavelet analysis.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Department of Zoology, Kalindi College, University of Delhi, Delhi, India.
Leukaemia, a group of haematological malignancies, presents ongoing diagnosis, prognosis, and treatment challenges. A major obstacle in treating this disease is the development of drug resistance. Overcoming drug resistance poses a significant barrier to effective leukaemia treatment.
View Article and Find Full Text PDFBioelectrochemistry
December 2024
Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India. Electronic address:
Traumatic brain injury (TBI) induces neurogenerative disorders affecting severely daily human activities and early diagnosis is a critical requirement for prevention and cure. Here, we induced TBI formation in the Zebra fish, a model organism, by both mechanical (ultrasonic cleaner generated convulsive shock, UGCS) and chemical (pentylenetetrazol, PTZ) methods. The TBI induced cellular and neuronal changes are monitored by measuring the activities of the indicator biomarkers viz.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!