Objective: To prepare the cross-linked chitosan/poly(acrylic acid)/poly (ethylene oxide) nanofibrous membrance loaded with pseudo-ginseng and to determine its characteristics.
Methods: Pseudo-ginseng entrapped in chitosan, poly (acrylic acid), poly (ethylene oxide) nanofibrous membrane loaded with pseudo-ginseng was prepared by electrospinning and thermal treatment method. The surface morphology of fiber membrane was observed by scanning electron microscopy and the chemical structures were characterized by infrared spectroscopy; the thermal decomposition temperature was analyzed by the thermogravimetric analysis. UV-Vis spectra were used to evaluate the in vitro release properties.
Results: The average diameter of the prepared nanofibrous particles was (181 ± 71) nm. The tensile strength of fiber membrane increased by 35.3% and the decomposition temperature increased from 197℃ to 208℃ after crosslinking. Compared with casting film, the structure of fiber membrane increased the release rate and the overall amount of active components from pseudo-ginseng.
Conclusion: The preparation of chitosan fiber loaded with pseudo-ginseng is simple and the dispersion of pseudo-ginseng is homogeneous. This fibrous pseudo-ginseng exhibited good release performance, providing a new Chinese medicine formulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10396852 | PMC |
http://dx.doi.org/10.3785/j.issn.1008-9292.2015.11.11 | DOI Listing |
Polymers (Basel)
January 2025
School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK.
Nanofibrous dressing materials with an antitumor function can potentially inhibit recurrence of melanoma following the surgical excision of skin tumors. In this study, hydrolyzed polyacrylonitrile (hPAN) nanofibers biofunctionalized with L-carnosine (CAR) and loaded with bio (CAR)-synthesized zinc oxide (ZnO) nanoparticles, ZnO/CAR-hPAN (hereafter called ZCPAN), were employed to develop an antimelanoma wound dressing. Inspired by the formulation of the commercial wound healing Zn-CAR complex, i.
View Article and Find Full Text PDFGels
January 2025
Department of Mechatronics Engineering, Engineering Faculty, Istanbul Ticaret University, 34854 Istanbul, Türkiye.
The aim of this project is to fabricate fiber mats and hydrogel materials that constitute the two main components of a wound dressing material. The contributions of boric acid (BA) and zinc oxide (ZnO) to the physical and mechanical properties of polycaprolactone (PCL) is investigated. These materials are chosen for their antimicrobial and antifungal effects.
View Article and Find Full Text PDFJ Pharm Anal
October 2024
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
The overuse of antibiotics has led to the severe contamination of water bodies, posing a considerable hazard to human health. Therefore, the development of an accurate and rapid point-of-care testing (POCT) platform for the quantitative detection of antibiotics is necessary. In this study, Cerium oxide (CeO) and Ferrosoferric oxide (FeO) nanoparticles were simultaneously encapsulated into N-doped nanofibrous carbon microspheres to form of a novel nanozyme (CeFe-NCMzyme) with a porous structure, high surface area, and N-doped carbon material properties, leading to a considerable enhancement of the peroxidase (POD)-like activity compared with that of the CeO or FeO nanoparticles alone.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
Ceramic aerogels are promising high-temperature thermal insulation materials due to their outstanding thermal stability and oxidation resistance. However, restricted by nanoparticle-assembled network structures, conventional ceramic aerogels commonly suffer from inherent brittleness, volume shrinkage, and structural collapse at high temperatures. Here, to overcome such obstacles, 3D ultralight and highly porous carbon tube foams (CTFs) were designed and synthesized as the carbonaceous precursors, where melamine foams were used as the sacrificial templates to form the hollow and thin-wall network structures in the CTFs (density: ∼4.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China. Electronic address:
Water electrolysis represents a green and efficient strategy for hydrogen (H) production. However, the four-electron transfer process involved in its anodic oxygen evolution reaction (OER) half-reaction restricts the H generation rate. Employing hydrazine oxidation reaction (HzOR) as a substitute for OER in H generation can dramatically reduce energy consumption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!