Background: Alzheimer's disease is the most frequent age-related dementia, and is currently without treatment. To identify possible targets for early therapeutic intervention we focused on glutamate excitotoxicity, a major early pathogenic factor, and the effects of candesartan, an angiotensin receptor blocker of neuroprotective efficacy in cell cultures and rodent models of Alzheimer's disease. The overall goal of the study was to determine whether gene analysis of drug effects in a primary neuronal culture correlate with alterations in gene expression in Alzheimer's disease, thus providing further preclinical evidence of beneficial therapeutic effects.
Methods: Primary neuronal cultures were treated with candesartan at neuroprotective concentrations followed by excitotoxic glutamate amounts. We performed genome-wide expression profile analysis and data evaluation by ingenuity pathway analysis and gene set enrichment analysis, compared with alterations in gene expression from two independent published datasets identified by microarray analysis of postmortem hippocampus from Alzheimer's disease patients. Preferential expression in cerebrovascular endothelial cells or neurons was analyzed by comparison to published gene expression in these cells isolated from human cortex by laser capture microdissection.
Results: Candesartan prevented glutamate upregulation or downregulation of several hundred genes in our cultures. Ingenuity pathway analysis and gene set enrichment analysis revealed that inflammation, cardiovascular disease and diabetes signal transduction pathways and amyloid β metabolism were major components of the neuronal response to glutamate excitotoxicity. Further analysis showed associations of glutamate-induced changes in the expression of several hundred genes, normalized by candesartan, with similar alterations observed in hippocampus from Alzheimer's disease patients. Gene analysis of neurons and cerebrovascular endothelial cells obtained by laser capture microdissection revealed that genes up- and downregulated by glutamate were preferentially expressed in endothelial cells and neurons, respectively.
Conclusions: Our data may be interpreted as evidence of direct candesartan neuroprotection beyond its effects on blood pressure, revealing common and novel disease mechanisms that may underlie the in vitro gene alterations reported here and glutamate-induced cell injury in Alzheimer's disease. Our observations provide novel evidence for candesartan neuroprotection through early molecular mechanisms of injury in Alzheimer's disease, supporting testing this compound in controlled clinical studies in the early stages of the illness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731966 | PMC |
http://dx.doi.org/10.1186/s13195-015-0167-5 | DOI Listing |
Alzheimers Dement
January 2025
Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA.
Introduction: Alzheimer's disease (AD) in Down syndrome (DS) is associated with changes in brain structure. It is unknown if thickness and volumetric changes can identify AD stages and if they are similar to other genetic forms of AD.
Methods: Magnetic resonance imaging scans were collected for 178 DS adults (106 nonclinical, 45 preclinical, and 27 symptomatic).
Alzheimers Dement
January 2025
UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.
Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.
View Article and Find Full Text PDFJ Taibah Univ Med Sci
December 2024
Universitas Nasional, Department of Biology, South Jakarta, Indonesia.
Objectives: Dementia, a growing concern globally, affects more than 55 million people-a number projected to rise to 152 million by 2050. Current medications target Alzheimer's disease, the most prevalent form of dementia. This study investigated L.
View Article and Find Full Text PDFFront Psychol
December 2024
Digital Cognitive Dx, Philips, Eindhoven, Netherlands.
We evaluated a digital cognitive assessment platform, Philips IntelliSpace Cognition, in a case-control study of patients diagnosed with mild cognitive impairment (MCI) and cognitively normal (CN) older adults. Performance on individual neuropsychological tests, cognitive -scores, and Alzheimer's disease (AD)-specific composite scores was compared between the CN and MCI groups. These groups were matched for age, sex, and education.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
The neurovascular unit (NVU) is highly responsible for cerebral homeostasis and its dysfunction emerges as a critical contributor to Alzheimer's disease (AD) pathology. Hence, rescuing NVU dysfunction might be a viable approach to AD treatments. Here, we fabricated a self-regulated muti-functional nano-modulator (siR/PIO@RP) that can intelligently navigate to damaged blood-brain barrier and release therapeutical cargoes for synergetic AD therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!