A biocatalytic route for the synthesis of a potential β-blocker, (S)-moprolol is reported here. Enantiopure synthesis of moprolol is mainly dependent on the chiral intermediate, 3-(2-methoxyphenoxy)-propane-1,2-diol. Various commercial lipases were screened for the enantioselective resolution of (RS)-3-(2-methoxyphenoxy)propane-1,2-diol to produce the desired enantiomer. Among them, Aspergillus niger lipase (ANL) was selected on the basis of both stereo- and regioselectivity. The optimized values of various reaction parameters were determined such as enzyme (15 mg/mL), substrate concentration (10 mM), organic solvent (toluene), reaction temperature (30 °C), and time (18 h).The optimized conditions led to achieving >49% yield with high enantiomeric excess of (S)-3-(2-methoxyphenoxy)propane-1,2-diol. The lipase-mediated catalysis showed regioselective acylation with dual stereoselectivity. Further, the enantiopure intermediate was used for the synthesis of (S)-moprolol, which afforded the desired β-blocker.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chir.22574DOI Listing

Publication Analysis

Top Keywords

route synthesis
8
synthesis s-moprolol
8
potential β-blocker
8
chemoenzymatic route
4
synthesis
4
s-moprolol potential
4
β-blocker biocatalytic
4
biocatalytic route
4
synthesis potential
4
β-blocker s-moprolol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!