Cystic fibrosis (CF) is the most common hereditary lung disease in the Caucasian population, characterized by viscous bronchial secretion, consecutive defective mucociliary clearance, and unavoidable colonization with microorganisms. Besides Pseudomonas aeruginosa, Staphylococcus aureus is the most common bacterial species colonizing the CF respiratory tract. Under antibiotic pressure S. aureus is able to switch to small colony variants (SCV). These small colony variants can invade epithelial cells, overcome antibiotic therapy inside the cells and can be the starting point for extracellular recolonization. The aim of the present study was the isolation and characterization of S. aureus small colony variants from Austrian cystic fibrosis patients. Samples collected from 147 patients were screened for the presence of S. aureus wild-type and small colony variants. Antibiotic susceptibility testing and determination of the small colony variants causing auxotrophism were performed. Wild-type isolates were assigned to corresponding small colony variants with spa typing. In total, 17 different small colony variant isolates and 12 corresponding wild-type isolates were obtained. 13 isolates were determined thymidine auxotroph, 2 isolates were auxotroph for hemin, and none of the tested isolates was auxotroph for both, respectively. The presence of SCVs is directly related to a poor clinical outcome, therefore a monitoring of SCV prevalence is recommended. This study revealed rather low SCV ratios in CF patients compared to other countries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828482PMC
http://dx.doi.org/10.1007/s00284-016-0994-zDOI Listing

Publication Analysis

Top Keywords

small colony
32
colony variants
28
cystic fibrosis
12
staphylococcus aureus
8
small
8
aureus small
8
colony
8
fibrosis patients
8
wild-type isolates
8
isolates auxotroph
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!