Background: The topical use of caffeine has been indicated for the lipodystrophies treatment as it promotes increased lipolysis. Ultrasound (US) is often used in cutaneous diseases, esthetic conditions, and as a skin permeation enhancer.
Objective: We investigate the lipolytic response of adipocytes isolated from subcutaneous adipose pigs tissue subjected to treatment with topical application of phonophoresis associated with caffeine.
Method: We treated dorsal regions of pigs (Landrace × Large White, 35 days, 15 kg, n = 6) daily for 15 days with gel, gel + US [3 MHz, continuous, 0.2 Wcm(2), 1 min/cm(2), in total 2 min], gel + caffeine (5%w/w), and gel + caffeine + US. We used a fifth untreated region as control. Twenty-four hours after the last application, we isolated the adipocytes of each treated area and quantified the basal and stimulated lipolytic responses to isoprenaline. The results, in μmol glycerol/10(6)cells/60 min, were analyzed with analysis of variance or ANOVA followed by Newman-Keuls test. The value of p < 0.05 was indicative of statistical difference.
Results: Only the adipocytes isolated from the area treated with caffeine + US showed increased basal lipolysis (0.76 ± 0.26; p = 0.0276) and maximal isoprenaline stimulation (0.38 ± 0.15, p = 0.0029) compared with the other areas.
Conclusion: The results demonstrate that increased lipolysis of caffeine + US is due to an increase in basal and beta-adrenoceptor response by caffeine, and caffeine's effect is local, avoiding unwanted effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/14764172.2015.1063659 | DOI Listing |
Curr Protoc
January 2025
Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey.
Bone marrow adipose tissue (BMAT) has garnered significant attention due to its critical roles in leukemia pathogenesis, cancer metastasis, and bone marrow failure. BMAT is a metabolically active, distinct tissue that differs from other fat depots. Marrow adipocytes, closely interacting with hematopoietic stem/progenitor cells and osteoblasts, play a pivotal role in regulating their functions.
View Article and Find Full Text PDFAnticancer Res
January 2025
Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, U.S.A.;
Background/aim: Obese individuals often exhibit vitamin D deficiency, potentially due to sequestration in fat cells. Little is known about how vitamin D enters adipocytes and associates with the intracellular lipid droplet.
Materials And Methods: Newly differentiated human and mouse (3T3-L1) adipocytes and primary mouse adipocytes were treated with vitamin D covalently linked to green fluorescent BODIPY (VitD-B) or Green BODIPY (GB) as control.
Redox Biol
December 2024
Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA; Department of Biomedical Engineering, UAB, Birmingham, AL, USA. Electronic address:
Background: Diabetes increases ischemic heart injury via incompletely understood mechanisms. We recently reported that diabetic adipocytes-derived small extracellular vesicles (sEV) exacerbate myocardial reperfusion (MI/R) injury by promoting cardiomyocyte apoptosis. Combining in vitro mechanistic investigation and in vivo proof-concept demonstration, we determined the underlying molecular mechanism responsible for diabetic sEV-induced cardiomyocyte apoptosis after MI/R.
View Article and Find Full Text PDFCytotechnology
February 2025
College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, 266109 China.
Osteoarthritis is a degenerative disease of cartilage, and exosome derived from mesenchymal stem cells (MSCs) are considered promising for treating inflammatory musculoskeletal disorders, although their mechanisms are not fully understood. This study aimed to investigate the effects of exosomes derived from canine bone marrow mesenchymal stem cells (cBMSCs-Exos) on the expression of inflammatory factors and genes related cartilage matrix metabolism in IL-1β-induced canine chondrocytes. Canine BMSCs were isolated and characterized for surface markers and trilineage differentiation.
View Article and Find Full Text PDFMar Drugs
November 2024
Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa.
Sulphated polysaccharides (SPs) are negatively charged compounds found in the cell wall of seaweeds or marine macro algae. These compounds exhibit a range of pharmacological activities, including anti-obesity effects. The aim of this systematic review as well as meta-analysis was to assess the potentials of seaweed-derived SPs to mitigate obesity through a systematic review and meta-analysis of animal model-based studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!