Are NHE1 and inducible nitric oxide synthase involved in human ovarian cancer?

Pharmacol Res

Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, QLD 4029, Australia. Electronic address:

Published: March 2016

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2016.01.007DOI Listing

Publication Analysis

Top Keywords

nhe1 inducible
4
inducible nitric
4
nitric oxide
4
oxide synthase
4
synthase involved
4
involved human
4
human ovarian
4
ovarian cancer?
4
nhe1
1
nitric
1

Similar Publications

Article Synopsis
  • Human mesenchymal stem cells (hMSCs) react to mechanical stimuli like stiffness and fluid viscosity, which impacts their behavior.
  • In environments with high fluid viscosity, hMSCs favor an osteogenic (bone-forming) phenotype over an adipogenic (fat-forming) one by altering their actin structure and enhancing cellular activities.
  • This research highlights fluid viscosity as an important factor that not only influences hMSC differentiation but also encourages a more immunosuppressive M2 macrophage phenotype.
View Article and Find Full Text PDF

Hexamethylene amiloride induces lysosome-mediated cell death in multiple myeloma through transcription factor E3.

Cell Death Discov

December 2024

Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Multiple myeloma (MM) is the second common hematological malignancy characterized by the abnormal proliferation of plasma cells. Although advances in the past decades have led to improved outcomes and longer survival, MM remains largely incurable. New targets and targeted therapy may help to achieve better outcomes.

View Article and Find Full Text PDF

Activation of receptor-independent fluid-phase pinocytosis promotes foamy monocyte formation in atherosclerotic mice.

Redox Biol

December 2024

Vascular Biology Center, Augusta University, Medical College of Georgia, Augusta, GA, 30912, USA; Department of Pharmacology and Toxicology, Augusta University, Medical College of Georgia, Augusta, GA, 30912, USA. Electronic address:

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death worldwide. Clinical and experimental data demonstrated that circulating monocytes internalize plasma lipoproteins and become lipid-laden foamy cells in hypercholesterolemic subjects. This study was designed to identify the endocytic mechanisms responsible for foamy monocyte formation, perform functional and transcriptomic analysis of foamy and non-foamy monocytes relevant to ASCVD, and characterize specific monocyte subsets isolated from the circulation of normocholesterolemic controls and hypercholesterolemic patients.

View Article and Find Full Text PDF

CARMIL1-AA selectively inhibits macropinocytosis while sparing autophagy.

Mol Biol Cell

January 2025

Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617.

Macropinocytosis is reported to fuel tumor growth and drug resistance by allowing cancer cells to scavenge extracellular macromolecules. However, accurately defining the role of macropinocytosis in cancer depends on our ability to selectively block this process. 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) is widely used to inhibit macropinocytosis but affects multiple Na/H exchangers (NHE) that regulate cytoplasmic and organellar pH.

View Article and Find Full Text PDF

This study aimed to observe the therapeutic effect of HFY11 (LP-HFY11) on lincomycin hydrochloride-induced diarrhea in mice. The results showed that LP-HFY11 alleviated weight loss and intestinal and colon tissue lesions caused by diarrhea. The serum assay showed that LP-HFY11 decreased interleukin 17A (IL-17A), IL-6, 5-hydroxytryptamine, and malondialdehyde levels and increased total antioxidant capacity in mice with diarrhea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!