Dry deposition is one of the most dangerous processes that can take place in the environment where the compounds that are suspended in the atmosphere can react directly on different surrounding materials, promoting decay processes. Usually this process is related with industrial/urban fog and/or marine aerosol in the coastal areas. Particularly, marine aerosol transports different types of salts which can be deposited on building materials and by dry deposition promotes different decay pathways. A new analytical methodology based on the combined use of Raman Spectroscopy and SEM-EDS (point-by-point and imaging) was applied. For that purpose, firstly evaporated seawater (presence of Primary Marine Aerosol (PMA)) was analyzed. After that, using a self-made passive sampler (SMPS), different suspended particles coming from marine aerosol (transformed particles in the atmosphere (Secondary Marine Aerosol (SMA)) and metallic airborne particulate matter coming from anthropogenic sources, were analyzed. Finally in order to observe if SMA and metallic particles identified in the SMPS can be deposited on a building, sandstone samples from La Galea Fortress (Getxo, north of Spain) located in front of the sea and in the place where the passive sampler was mounted were analyzed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2016.01.080 | DOI Listing |
Chem Soc Rev
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana, 47906, USA.
The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.
View Article and Find Full Text PDFMar Environ Res
December 2024
Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address:
Dimethylsulfide (DMS) and very short-lived bromocarbons (VSL) are important biogenic trace gases emitted from oceans that can affect the global climate. Atmospheric deposition (AD) can provide nutrients and trace metals to the ocean, which can enhance primary productivity, but the complex effects of AD on DMS and VSL are still largely unexplored. A deck incubation experiment with aerosol additions was conducted to simulate the effects of acid-processed AD on the production of trace gases, including DMS and four VSL such as bromoform (CHBr), dibromomethane (CHBr), dibromochloromethane (CHBrCl), and bromodichloromethane (CHBrCl), in the oligotrophic western Pacific Ocean (WPO).
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
Bisphenol A (BPA, 4,4'-(propane-2,2-diyl)diphenol) is a common plasticizer that is very widespread in the environment and is also found at significant concentrations in the global oceans, due to contamination by plastics. Here we show that triplet sensitization is an important degradation pathway for BPA in natural surface waters, which could prevail if the water dissolved organic carbon is above 2-3 mg L. Bromide levels as per seawater conditions have the potential to slow down BPA photodegradation, a phenomenon that could not be offset by reaction of BPA with Br (second-order reaction rate constant of (2.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, Xiamen 361001, China.
Accurately assessing the dry deposition fluxes of inorganic nitrogen aerosol (aerosol-IN) is crucial for mitigating the ecological damage caused by excessive nitrogen in oceanic equilibria. We developed a dry deposition model to assess the dry deposition fluxes of aerosol-IN into Chinese offshore areas over a decade, with the range of 2.81 × 10-1.
View Article and Find Full Text PDFSci Total Environ
December 2024
Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China. Electronic address:
Marine aerosols are major components of atmospheric aerosols, playing substantial roles in influencing the regional and global environment and climate. Marine aerosols are not only produced by seawater directly, but also by indirect processes such as atmospheric oxidation of marine bioactive gases as well as terrestrial transport. Over the Eastern China Marginal Seas (ECMS), marine aerosols are strongly affected by marine emission and transport of terrestrial aerosols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!