During heavy rainfall, the capacity of sewer systems and wastewater treatment plants may be surcharged producing uncontrolled wastewater discharges and a depletion of the environmental quality. Therefore there is a need of advanced management tools to tackle with these complex problems. In this paper an environmental decision support system (EDSS), based on the integration of mathematical modeling and knowledge-based systems, has been developed for the coordinated management of urban wastewater systems (UWS) to control and minimize uncontrolled wastewater spills. Effectiveness of the EDSS has been tested in a specially designed virtual UWS, including two sewers systems, two WWTP and one river subjected to typical Mediterranean rain conditions. Results show that sewer systems, retention tanks and wastewater treatment plants improve their performance under wet weather conditions and that EDSS can be very effective tools to improve the management and prevent the system from possible uncontrolled wastewater discharges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2016.01.076 | DOI Listing |
ACS Nano
January 2025
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Solar water evaporation (SWE) has emerged as an appealing method for water and salt recovery from hypersaline wastewater. However, different ions usually transfer and accumulate uncontrollably during ion-water separation, making salt fractionalization impractical for conventional SWE, and the resulting mixed salts are hard to use and still require significant costs for disposal. To achieve salt fractionalization and reutilization, achieving ion-water and ion-ion separation simultaneously are crucial in advancing SWE toward sustainability.
View Article and Find Full Text PDFMar Environ Res
December 2024
Physical Chemistry Department, Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEIMAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Spain. Electronic address:
Coastal ecosystems are heavily anthropized areas impacted by discharge of chemical pollutants. We present for the first time the occurrence of a wide number of such chemicals in surface water, sediment, suspended particulate matter, and corals from a protected Mediterranean setting, La Herradura Bay (Spain). A seasonal monitoring sampling campaign was conducted in 2021 (winter and summer).
View Article and Find Full Text PDFSci Total Environ
December 2024
Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP52, 20250 Corte, France; CNRS, UMR 6134 SPE, BP52, 20250 Corte, France. Electronic address:
Rapid and uncontrolled urbanization in sub-Saharan Africa has led to an increased production and expansion of synthetic chemicals, resulting in significant pollution of the aquatic environments, particularly by Emerging Organic Contaminants (EOCs). Due to the low income of the population in this region, there is often a lack of control over water and fishery resources prior to consumption. Therefore, the current study aims to use EOCs as markers of water resource quality degradation, and to assess the potential environmental risk of these compounds on some aquatic organisms.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
Facing the global challenge of water scarcity, solar-driven desalination is considered a sustainable technology for obtaining freshwater from seawater. However, issues such as uncontrolled salt crystallization and bacterial contamination limit its efficiency and practicality. This study proposes an innovative solar-driven evaporator designed to address these challenges using optimized shape design and advanced photothermal materials.
View Article and Find Full Text PDFChemosphere
October 2024
Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, 77005, USA; NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, 6100 Main Street, Houston, 77005, USA; Department of Materials Science and Nano Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA. Electronic address:
Despite the detection of poly- and perfluorinated alkyl substances (PFAS) in the water system in Africa, the effort towards mitigating PFAS in water in Africa needs to be better understood. Therefore, this review evaluated the contamination status and mitigation methods for handling PFAS-contaminated water systems in Africa. The findings revealed the presence of PFAS in wastewater treatment plant (WWTP) effluents, surface water and commercially available bottled and tap water in African countries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!