The nuclear receptor Nurr1 can be activated by RXR via heterodimerization (RXR-Nurr1) and is a promising target for treating neurodegenerative diseases. We herein report the enantioselective synthesis and SAR of sterically constricted benzofurans at RXR. The established SAR, using whole cell functional assays, lead to the full agonist 9a at RXR (pEC50 of 8.2) and RXR-Nurr1. The X-ray structure shows enantiomeric discrimination where 9a optimally addresses the ligand binding pocket of RXR.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.5b01702DOI Listing

Publication Analysis

Top Keywords

chiral dihydrobenzofuran
4
dihydrobenzofuran acids
4
acids potent
4
potent retinoid
4
retinoid receptor-nuclear
4
receptor-nuclear receptor
4
receptor protein
4
protein dimer
4
dimer activation
4
activation nuclear
4

Similar Publications

Utilizing enzymes as biocatalysts, an alternative strategy has been developed for the highly enantioselective synthesis of chiral 2,3-dihydrobenzofuran (2,3-DHB) esters via the dynamic kinetic resolution of 2,3-dihydro-3-benzofuranols, which are generated from an intramolecular Aldol reaction. This protocol provides easy access to a series of 2,3-DHB ester derivatives, prodrugs, and allows for functional group transformations. Biological evaluation also indicates that some of the products exhibit potent anti-inflammatory activity.

View Article and Find Full Text PDF

Atopic dermatitis is a chronic relapsing skin disease characterized by recurrent, pruritic, localized eczema, while PDE4 inhibitors have been reported to be effective as antiatopic dermatitis agents. 3',4--dimethylcedrusin (DCN) is a natural dihydrobenzofuran neolignan isolated from with moderate potency against PDE4 (IC = 3.26 ± 0.

View Article and Find Full Text PDF

Nav1.7 Modulator Bearing a 3-Hydroxyindole Backbone Holds the Potential to Reverse Neuropathic Pain.

ACS Chem Neurosci

March 2024

School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.

Chronic pain is a growing global health problem affecting at least 10% of the world's population. However, current chronic pain treatments are inadequate. Voltage-gated sodium channels (Navs) play a pivotal role in regulating neuronal excitability and pain signal transmission and thus are main targets for nonopioid painkiller development, especially those preferentially expressed in dorsal root ganglial (DRG) neurons, such as Nav1.

View Article and Find Full Text PDF

Developed herein is a chiral sulfoximine-enabled Ru(II)-catalyzed asymmetric C-H activation/functionalization involving intramolecular hydroarylation and functionalization/annulation of alkynes. This process constructs dihydrobenzofuran- or indoline-fused isoquinolinones having a tertiary or quaternary stereocenter with good yields and enantioselectivities (up to 97:3 enantiomeric ratio). The chiral sulfoxide precursor used in synthesizing the enantiopure sulfoximines is spontaneously eliminated during the reaction.

View Article and Find Full Text PDF

Catalytic asymmetric dearomative [3+2] cycloaddition of -imino -lactones with either 3-nitroindoles or 2-nitrobenzofurans by using a chiral copper complex as the catalyst was developed. A wide range of structurally diverse polyheterocyclic compounds containing spirocyclic-fused butyrolactone-pyrrolidine-indoline and butyrolactone-pyrrolidine-dihydrobenzofuran skeletons could be smoothly obtained with excellent results (>99:1 dr and 98% ee). The potential synthetic applications of this methodology were also demonstrated by the scale-up experiment and by the diverse transformations of one product.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!