Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To investigate the feasibility of identification of qualified and adulterated oil product using hyperspectral imaging(HIS) technique, a novel feature set based on quantized histogram matrix (QHM) and feature selection method using improved kernel independent component analysis (iKICA) is proposed for HSI. We use UV and Halogen excitations in this study. Region of interest(ROI) of hyperspectral images of 256 oil samples from four varieties are obtained within the spectral region of 400-720nm. Radiation indexes extracted from each ROI are used as feature vectors. These indexes are individual band radiation index (RI), difference of consecutive spectral band radiation index (DRI), ratio of consecutive spectral band radiation index (RRI) and normalized DRI (NDRI). Another set of features called quantized histogram matrix (QHM) are extracted by applying quantization on the image histogram from these features. Based on these feature sets, improved kernel independent component analysis (iKICA) is used to select significant features. For comparison, algorithms such as plus L reduce R (plusLrR), Fisher, multidimensional scaling (MDS), independent component analysis (ICA), and principle component analysis (PCA) are also used to select the most significant wavelengths or features. Support vector machine (SVM) is used as the classifier. Experimental results show that the proposed methods are able to obtain robust and better classification performance with fewer number of spectral bands and simplify the design of computer vision systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731151 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146547 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!