A previous study on domestic cats in Germany and neighbouring countries suggested seasonality in shedding Toxoplasma gondii oocysts. The aim of the present study was to elucidate whether this seasonality in shedding could be explained by climatic effects and whether differences between years in the proportions of cats shedding oocysts could also be explained by climatic factors. To this end, a long-term study over a period of 55 months on domestic cats for T. gondii and Hammondia hammondi oocysts was performed and the results compared with climatic data. Using species-specific PCR, T. gondii oocysts were identified in 0.14% (84/61,224) and H. hammondi in 0.10% (61/61,224) of the samples. Toxoplasma gondii oocysts were predominantly observed from summer to autumn, while H. hammondi oocysts were mainly found during autumn and winter. In statistical analyses using climatic data, even differences in parasitological findings between years could be partially modelled using monthly temperature, North Atlantic Oscillation indices and precipitation. Of the three climatic variables analysed, precipitation as an explanatory variable had the lowest impact in the statistical models while those taking only temperature and North Atlantic Oscillation indices into account were sufficiently predictive. Interestingly, time lags between the climatic event and the parasitological findings had to be implemented in all models. For T. gondii, North Atlantic Oscillation indices with a time lag of 7 months and temperature with a time lag of 2 months had the best predictive value. In contrast, temperature (with a time lag of 6 months) and the interaction of precipitation (with a time lag of 5 months) and North Atlantic Oscillation indices (with a time lag of 11 months) were optimal for predicting the seasonality of H. hammondi. These results suggest prominent differences in the life cycles of the two closely related parasites. Previous findings showed that H. hammondi lack avian hosts, in contrast to T. gondii, and the coincidence in the periods of high abundance of birds and high proportions of cats shedding T. gondii suggest that birds may play an important role in the epidemiology of this infection. The result that North Atlantic Oscillation index is an important variable in modelling variations in the proportion of cats shedding T. gondii and H. hammondi over the year is an indication that global warming may also influence the infection risk of animals and humans with T. gondii and H. hammondi. The findings have important implications for planning epidemiological studies and for estimating the risk of human infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpara.2015.12.006DOI Listing

Publication Analysis

Top Keywords

north atlantic
20
atlantic oscillation
20
time lag
20
lag months
20
cats shedding
16
oscillation indices
16
domestic cats
12
toxoplasma gondii
12
hammondi oocysts
12
gondii oocysts
12

Similar Publications

In this study, a relationship between climate indices (local - air temperatures, and wide-scale - North Atlantic Oscillation) and first arrival dates (FAD) of a short-distant migratory bird, the Common Wood Pigeon (Columba palumbus) at a breeding site in SE Poland (Lublin) was investigated. Temporal patterns of FAD on a multi-year scale (20 years within 39 years between 1982 and 2020) were also studied. Additionally, correlations between mean air temperature at Lublin and sites along the spring migration route with various distances from the breeding site and various time lags were searched for.

View Article and Find Full Text PDF

Blue carbon refers to organic carbon sequestered by oceanic and coastal ecosystems. This stock has gained global attention as a high organic carbon repository relative to other ecosystems. Within blue carbon ecosystems, tidally influenced wetlands alone store a disproportionately higher amount of organic carbon than other blue carbon systems.

View Article and Find Full Text PDF

Borealis is a recently discovered submerged mud volcano in the Polar North Atlantic, differing from the numerous methane seepages previously identified in the region. Here we show in situ observations from a remotely operated vehicle (ROV), capturing the release of warm (11.5 °C) Neogene sediments and methane-rich fluids from a gryphon at Borealis.

View Article and Find Full Text PDF

Environmental and population influences on mummichog () gut microbiomes.

Microbiol Spectr

January 2025

Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.

Unlabelled: The mummichog, , an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds.

View Article and Find Full Text PDF

We report on a procedure for extracting the SPICE model parameters of a RADFET sensor with a dielectric HfO/SiO double-layer. RADFETs, traditionally fabricated as PMOS transistors with SiO, are enhanced by incorporating high-k dielectric materials such as HfO to reduce oxide thickness in modern radiation sensors. The fabrication steps of the sensor are outlined, and model parameters, including the threshold voltage and transconductance, are extracted based on experimental data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!