Alemtuzumab long-term immunologic effect: Treg suppressor function increases up to 24 months.

Neurol Neuroimmunol Neuroinflamm

Division of Neurology (S.D.M., S.R., A.C., L.D., M.C.) and the Department of Clinical and Biological Sciences (S.D.M., A.C., L.D., M.C.), University of Torino, San Luigi Gonzaga University Hospital, Orbassano; Center for Experimental Research and Medical Studies (CERMS) (S.R., V.B., F.N.), Azienda Ospedaliera Città della Salute e della Scienza di Torino; Department of Molecular Biotechnology and Health Sciences (V.B., F.N.), Università degli Studi di Torino; Multiple Sclerosis Center (E.C.), Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy; Department of Neurology (A.V., S.S.-B.), Clinical Hospital Sveti Duh Zagreb; Medical Faculty University (A.V., S.S.-B.), J.J. Strossmayer Osijek; Department of Neurology (M.H., I.A.), Referral Center for Demyelinating Diseases of the Central Nervous System, University Hospital Center Zagreb, Croatia; Department of Neurology and Center of Clinical Neuroscience (D.H.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Czech Republic; and Multiple Sclerosis Study Center (P.A.), AO S. Antonio Abate, Gallarate (VA), Italy.

Published: February 2016

Objective: To analyze changes in T-helper (Th) subsets, T-regulatory (Treg) cell percentages and function, and mRNA levels of immunologically relevant molecules during a 24-month follow-up after alemtuzumab treatment in patients with relapsing-remitting multiple sclerosis (RRMS).

Methods: Multicenter follow-up of 29 alemtuzumab-treated patients with RRMS in the Comparison of Alemtuzumab and Rebif Efficacy in Multiple Sclerosis (CARE-MS) I and CARE-MS II trials. Peripheral blood (PB) samples were obtained at months 0, 6, 12, 18, and 24. We evaluated (1) mRNA levels of 26 immunologic molecules (cytokines, chemokines, chemokine receptors, and transcriptional factors); (2) Th1, Th17, and Treg cell percentages; and (3) myelin basic protein (MBP)-specific Treg suppressor activity.

Results: We observed 12 relapses in 9 patients. mRNA levels of the anti-inflammatory cytokines interleukin (IL)-10, IL-27, and transforming growth factor-β persistently increased whereas those of proinflammatory molecules related to the Th1 or Th17 subsets persistently decreased after alemtuzumab administration throughout the follow-up period. PB CD4+ cell percentage remained significantly lower than baseline while that of Th1 and Th17 cells did not significantly change. A significant increase in Treg cell percentage was observed at month 24 and was accompanied by an increase in Treg cell suppressive activity against MBP-specific Th1 and Th17 cells.

Conclusions: The long-lasting therapeutic benefit of alemtuzumab in RRMS may involve a shift in the cytokine balance towards inhibition of inflammation associated with a reconstitution of the PB CD4+ T-cell subsets that includes expansion of Treg cells with increased suppressive function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4723135PMC
http://dx.doi.org/10.1212/NXI.0000000000000194DOI Listing

Publication Analysis

Top Keywords

treg cell
16
th1 th17
16
mrna levels
12
treg suppressor
8
cell percentages
8
multiple sclerosis
8
cell percentage
8
increase treg
8
treg
7
alemtuzumab
5

Similar Publications

Immune Cells and Intracerebral Hemorrhage: A Causal Investigation Through Mendelian Randomization.

Brain Behav

January 2025

Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.

Background: The involvement of immune cells in the pathophysiology of intracerebral hemorrhage (ICH) is becoming increasingly recognized, yet their specific causal contributions remain uncertain. The objective of this research is to uncover the potential causal interactions between diverse immune cells and ICH using Mendelian randomization (MR) analysis.

Methods: Genetic variants associated with 731 immune cell traits were sourced from a comprehensive genome-wide association study (GWAS) involving 3757 participants.

View Article and Find Full Text PDF

Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.

Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.

View Article and Find Full Text PDF

Systemic sclerosis (SSc) is an idiopathic systemic connective tissue disorder characterized by fibrosis of the skin and internal organs, with growing interest in the imbalance between Th17 cells and regulatory T cells (Tregs) in the disease's pathogenesis. Heligmosomoides polygyrus (Hp), a natural intestinal parasite of mice, is known to induce Tregs in the host. We aimed to investigate the effects of Hp-induced Tregs on bleomycin-induced dermal fibrosis and clarify the role of the Th17/Treg balance in SSc fibrosis.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) is a dangerous neurological disease associated with an imbalance in Th17/Treg cells and abnormal activation of the Wnt/β-catenin signaling pathway. This study aims to investigate whether inhibition of miR-155 can activate the Wnt/β-catenin signaling pathway to improve Th17/Treg imbalance and provide neuroprotective effects against stroke. We employed a multi-level experimental design.

View Article and Find Full Text PDF

Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!