Exome-based genotyping arrays are cost-effective and have recently been used as alternative platforms to whole-exome sequencing. However, the automated clustering algorithm in an exome array has a genotype calling problem in accuracy for identifying rare and low-frequency variants. To address these shortcomings, we present a practical approach for accurate genotype calling using the Illumina Infinium HumanExome BeadChip. We present comparison results and a statistical summary of our genotype data sets. Our data set comprises 14,647 Korean samples. To solve the limitation of automated clustering, we performed manual genotype clustering for the targeted identification of 46,076 variants that were identified using GenomeStudio software. To evaluate the effects of applying custom cluster files, we tested cluster files using 804 independent Korean samples and the same platform. Our study firstly suggests practical guidelines for exome chip quality control in Asian populations and provides valuable insight into an association study using exome chip.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706946 | PMC |
http://dx.doi.org/10.1155/2015/421715 | DOI Listing |
Brief Bioinform
November 2024
MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310030, China.
Accurate and rapid taxonomic classifications are essential for systematically exploring organisms and metabolites in diverse environments. Many tools have been developed for biological taxonomic trees, but limitations apply, and a streamlined method for constructing chemical taxonomic trees is notably absent. We present the iPhylo suite (https://www.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Urology Surgery, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China.
To evaluate the predictive utility of N6-methyladenosine (m6A)-associated long non-coding RNAs (lncRNAs) for the prognosis and immunotherapy response in papillary renal cell carcinoma (pRCC). Transcriptomic data of pRCC samples were extracted from the TCGA database. The m6A-related lncRNAs were identified by Pearson correlation analysis.
View Article and Find Full Text PDFJ Robot Surg
December 2024
Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, P. R. China.
Since its introduction, robotic surgery has experienced rapid development and has been extensively implemented across various medical disciplines. It is crucial to comprehend the advancements in research and the evolutionary trajectory of its thematic priorities. This research conducted a bibliometric analysis on the literature pertaining to robotic surgery, spanning the period from 2014 to 2023, sourced from the Web of Science database.
View Article and Find Full Text PDFBiol Psychiatry
December 2024
School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China. Electronic address:
Understanding the heterogeneity of Alzheimer's disease (AD) is crucial for advancing precision medicine specifically tailored to this disorder. Recent research has deepened our understanding of AD heterogeneity, yet translating these insights from bench to bedside via neuroimaging heterogeneity frameworks presents significant challenges. In this review, we systematically revisit prior studies and summarize the existing methodology of data-driven neuroimaging studies for AD heterogeneity.
View Article and Find Full Text PDFTalanta
December 2024
Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China. Electronic address:
Nucleic acid detection is considered the golden standard for diagnosing infectious diseases caused by various pathogens, including viruses, bacteria, and parasites. PCR and other amplification-based technologies are highly sensitive and specific, allowing for accurate detection and identification of low-level causative pathogens by targeting and amplifying their unique genetic segment (DNA or RNA). However, it is important to recognize that machinery-dependent diagnostic methods may only sometimes be available or practical in resource-limited settings, where direct implementation can be challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!