is associated with inflammatory diseases and can cause gastric cancer and mucosa-associated lymphoma. One of the bacterium's key proteins is high temperature requirement A (HtrA) protein, an extracellular serine protease that cleaves E-cadherin of gastric epithelial cells, which leads to loss of cell-cell adhesion. Inhibition of HtrA may constitute an intervention strategy against infection. Guided by the computational prediction of hypothetical ligand binding sites on the surface of HtrA, we performed residue mutation experiments that confirmed the functional relevance of an allosteric region. We virtually screened for potential ligands addressing this surface cleft located between the catalytic and PDZ1 domains. Our receptor-based computational method represents protein surface pockets in terms of graph frameworks and retrieves small molecules that satisfy the constraints given by the pocket framework. A new chemical entity was identified that blocked E-cadherin cleavage by direct binding to HtrA, and efficiently blocked pathogen transmigration across the gastric epithelial barrier. A preliminary crystal structure of HtrA confirms the validity of a comparative "homology" model of the enzyme, which we used for the computational study. The results of this study demonstrate that addressing orphan protein surface cavities of target macromolecules can lead to new bioactive ligands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724879PMC
http://dx.doi.org/10.1039/C4SC01443JDOI Listing

Publication Analysis

Top Keywords

ligand binding
8
gastric epithelial
8
protein surface
8
htra
5
inhibiting htra
4
htra protease
4
protease addressing
4
addressing computationally
4
computationally predicted
4
predicted allosteric
4

Similar Publications

Voltage-dependent anion channel 1 (VDAC1) is a key protein in cellular metabolism and apoptosis. Here, we present a protocol to express and purify milligram amounts of recombinant VDAC1 in Escherichia coli. We detail steps for a fluorescence polarization-based high-throughput screening assay using NADH displacement, along with procedures for thermostability, fluorescence polarization, and X-ray crystallography.

View Article and Find Full Text PDF

PbsNRs: predict the potential binders and scaffolds for nuclear receptors.

Brief Bioinform

November 2024

Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, School of Life Sciences, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China.

Nuclear receptors (NRs) are a class of essential proteins that regulate the expression of specific genes and are associated with multiple diseases. In silico methods for prescreening potential NR binders with predictive binding ability are highly desired for NR-related drug development but are rarely reported. Here, we present the PbsNRs (Predicting binders and scaffolds for Nuclear Receptors), a user-friendly web server designed to predict the potential NR binders and scaffolds through proteochemometric modeling.

View Article and Find Full Text PDF

Preclinical and in silico studies of 3-benzothioyl-1-(3-hydroxy-3-phenyl-3-propyl)-1-methylthiourea: a promising agent for depression and anxiety.

Eur J Pharmacol

January 2025

Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan-23200, Pakistan; Department of Pharmacy, Korea University, Sejong 20019, South Korea. Electronic address:

The study investigated the anxiolytic, antidepressant, sedative/hypnotic and in silico molecular docking properties of the synthetic ephedrine-based derivative of thiourea, 3-benzothioyl-1-(3-hydroxy-3-phenyl-3-propyl)-1-methylthiourea. Safety profile of the compound at various doses was determined in an acute toxicity test. Results showed significant anti-anxiety effects of the compound in all mice studies.

View Article and Find Full Text PDF

The pathology of Alzheimer's disease (AD) is complex due to its multifactorial nature and single targeting drugs proved inefficient. A series of novel 4-N-substituted-2-phenylquinazoline derivatives was designed and synthesized as potential multi-target directed ligands (MTDLs) through dual inhibition of AChE and MAO-B enzymes along with Aβ aggregation inhibition for the treatment of AD. Two compounds in the series, VAV-8 and VAV-19 were found to be the most potent inhibitors of both AChE and MAO-B enzymes and moderate inhibitor of Aβ, with good thermodynamic stability at the binding pocket of the enzymes.

View Article and Find Full Text PDF

Recycling of protein-rich environmental wastes and obtaining more valuable products from these recycled products is a topic of interest for researchers. This study aims to produce, purify, and characterize the physicochemical and structural properties of the protease enzyme produced from Brevibacillus agri SAR25 using salmon fish waste as substrate and also to evaluate the effect of protease on the chicken feather, enzyme-ligand interactions, and active site surface area. The production of protease was optimum on 50 g/L fish waste, pH 8, 40 °C, 96 h, and 150 rpm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!