A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Failing Heart Relies on Ketone Bodies as a Fuel. | LitMetric

The Failing Heart Relies on Ketone Bodies as a Fuel.

Circulation

From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.).

Published: February 2016

Background: Significant evidence indicates that the failing heart is energy starved. During the development of heart failure, the capacity of the heart to utilize fatty acids, the chief fuel, is diminished. Identification of alternate pathways for myocardial fuel oxidation could unveil novel strategies to treat heart failure.

Methods And Results: Quantitative mitochondrial proteomics was used to identify energy metabolic derangements that occur during the development of cardiac hypertrophy and heart failure in well-defined mouse models. As expected, the amounts of proteins involved in fatty acid utilization were downregulated in myocardial samples from the failing heart. Conversely, expression of β-hydroxybutyrate dehydrogenase 1, a key enzyme in the ketone oxidation pathway, was increased in the heart failure samples. Studies of relative oxidation in an isolated heart preparation using ex vivo nuclear magnetic resonance combined with targeted quantitative myocardial metabolomic profiling using mass spectrometry revealed that the hypertrophied and failing heart shifts to oxidizing ketone bodies as a fuel source in the context of reduced capacity to oxidize fatty acids. Distinct myocardial metabolomic signatures of ketone oxidation were identified.

Conclusions: These results indicate that the hypertrophied and failing heart shifts to ketone bodies as a significant fuel source for oxidative ATP production. Specific metabolite biosignatures of in vivo cardiac ketone utilization were identified. Future studies aimed at determining whether this fuel shift is adaptive or maladaptive could unveil new therapeutic strategies for heart failure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766035PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.115.017355DOI Listing

Publication Analysis

Top Keywords

failing heart
20
heart failure
16
ketone bodies
12
bodies fuel
12
heart
11
fatty acids
8
ketone oxidation
8
myocardial metabolomic
8
hypertrophied failing
8
heart shifts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!