Transplant coronary artery vasculopathy (TCAV) is the primary cause of late graft loss in pediatric heart transplant recipients. TCAV is diagnosed using angiography or intravascular ultrasound; however, noninvasive methods remain elusive. We sought to define patterns of myocardial mechanics in patients with TCAV and to determine whether this can detect TCAV before invasive methods. In this retrospective study, we queried our heart transplant database to identify all recipients with TCAV since 2006 (n = 41). Echoes were reviewed from the last normal catheterization and at TCAV diagnosis, and from time-matched transplant controls (n = 33) without TCAV. Peak global circumferential and longitudinal strain and systolic and diastolic strain rate (SSR and DSR) of the left ventricle were derived using velocity vector imaging. T tests were used to compare both groups longitudinally and between groups at both time points. Longitudinal strain, SSR, and DSR were diminished in the TCAV group compared to the transplant control group at both time points. No differences were found across time points in either group. Retrospective modeling using a longitudinal strain cutoff of 15 % on echoes 2 years prior to TCAV diagnosis predicted development or exclusion of TCAV with sensitivity of 53 %, specificity of 89 % with an area under the curve of 0.8. Decreases in longitudinal strain measurements demonstrate that alterations in myocardial mechanics occur in patients with TCAV at least 2 years prior to invasive diagnosis. These early changes may be due to microvascular disease. This modality could aid in earlier treatment and intervention for this challenging problem .

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00246-015-1328-9DOI Listing

Publication Analysis

Top Keywords

longitudinal strain
20
time points
12
tcav
11
strain rate
8
invasive diagnosis
8
transplant coronary
8
coronary artery
8
artery vasculopathy
8
heart transplant
8
recipients tcav
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!