Cellular microenvironment controls the nuclear architecture of breast epithelia through β1-integrin.

Cell Cycle

a Faculty of Life Sciences and Wellcome Trust Center for Cell-Matrix Research, University of Manchester, Manchester , United Kingdom.

Published: December 2016

Defects in nuclear architecture occur in a variety of diseases, however the fundamental mechanisms that control the internal structure of nuclei are poorly defined. Here we reveal that the cellular microenvironment has a profound influence on the global internal organization of nuclei in breast epithelia. A 3D microenvironment induces a prolonged but reversible form of cell cycle arrest that features many of the classical markers of cell senescence. This unique form of arrest is dependent on signaling from the external microenvironment through β1-integrins. It is concomitant with alterations in nuclear architecture that characterize the withdrawal from cell proliferation. Unexpectedly, following prolonged cell cycle arrest in 3D, the senescence-like state and associated reprogramming of nuclear architecture are freely reversible on altering the dimensionality of the cellular microenvironment. Breast epithelia can therefore maintain a proliferative plasticity that correlates with nuclear remodelling. However, the changes in nuclear architecture are cell lineage-specific and do not occur in fibroblasts, and moreover they are overcome in breast cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4943696PMC
http://dx.doi.org/10.1080/15384101.2015.1121354DOI Listing

Publication Analysis

Top Keywords

nuclear architecture
20
cellular microenvironment
12
breast epithelia
12
cell cycle
8
cycle arrest
8
nuclear
6
architecture
5
cell
5
microenvironment controls
4
controls nuclear
4

Similar Publications

This study proposes a novel, highly sensitive neutron detector design utilizing a unique multi-layered configuration. Each layer consists of a LiF: ZnS(Ag) scintillator coupled with a transparent neutron moderator that also functions as a light guide for the Silicon Photomultiplier (SiPM) light sensor. This design offers a cost-effective and readily available alternative for existing neutron detectors.

View Article and Find Full Text PDF

Oogenesis involves a novel nuclear envelop remodeling mechanism in Schmidtea mediterranea.

Dev Biol

December 2024

Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:

The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.

View Article and Find Full Text PDF

Chromatin Topological Domains Associate With the Rapid Formation of Tandem Duplicates in Plants.

Adv Sci (Weinh)

December 2024

School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.

In eukaryotes, chromatin is compacted within nuclei under the principle of compartmentalization. On top of that, condensin II establishes eukaryotic chromosome territories, while cohesin organizes the vertebrate genome by extruding chromatin loops and forming topologically associating domains (TADs). Thus far, the formation and roles of these chromatin structures in plants remain poorly understood.

View Article and Find Full Text PDF

Canine monocytic ehrlichiosis (CME), induced by Ehrlichia canis, is an important infectious disease in dogs, characterized by various clinical signs and consequent immune dysfunction. This study aimed to characterize nuclear morphology, chromatin compaction, histone H3 acetylation, and DNA methylation in lymphocytes from dogs naturally infected with E. canis, compared with healthy controls.

View Article and Find Full Text PDF

Is increased mutation driving genetic diversity in dogs within the Chornobyl exclusion zone?

PLoS One

December 2024

Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America.

Environmental contamination can have lasting impacts on surrounding communities, though the long-term impacts can be difficult to ascertain. The disaster at the Chornobyl Nuclear Power Plant in 1986 and subsequent remediation efforts resulted in contamination of the local environment with radioactive material, heavy metals, and additional environmental toxicants. Many of these are mutagenic in nature, and the full effect of these exposures on local flora and fauna has yet to be understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!