It has been suggested that neuronal hyperexcitability contributes to Alzheimer's disease (AD), so we asked how hyperexcitability develops in a common mouse model of β-amyloid neuropathology - Tg2576 mice. Using video-EEG recordings, we found synchronized, large amplitude potentials resembling interictal spikes (IIS) in epilepsy at just 5 weeks of age, long before memory impairments or β-amyloid deposition. Seizures were not detected, but they did occur later in life, suggesting that IIS are possibly the earliest stage of hyperexcitability. Interestingly, IIS primarily occurred during rapid-eye movement (REM) sleep, which is notable because REM is associated with increased cholinergic tone and cholinergic impairments are implicated in AD. Although previous studies suggest that cholinergic antagonists would worsen pathophysiology, the muscarinic antagonist atropine reduced IIS frequency. In addition, we found IIS occurred in APP51 mice which overexpress wild type (WT)-APP, although not as uniformly or as early in life as Tg2576 mice. Taken together with results from prior studies, the data suggest that surprising and multiple mechanisms contribute to hyperexcitability. The data also suggest that IIS may be a biomarker for early detection of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730189PMC
http://dx.doi.org/10.1038/srep20119DOI Listing

Publication Analysis

Top Keywords

interictal spikes
8
mouse model
8
model β-amyloid
8
β-amyloid neuropathology
8
tg2576 mice
8
iis occurred
8
iis
6
spikes sleep
4
sleep early
4
early defect
4

Similar Publications

In this study, we developed and validated an online analysis framework in MATLAB Simulink for recording and analysis of intracranial electroencephalography (iEEG). This framework aims to detect interictal spikes in patients with epilepsy as the data is being recorded. An online spike detection was performed over 10-minute interictal iEEG data recorded with Brain Interchange CorTec in three human subjects.

View Article and Find Full Text PDF

Objective: Patients with drug-resistant epilepsy (DRE) are often referred for phase II evaluation with stereo-electroencephalography (SEEG) to identify a seizure onset zone for guiding definitive treatment. For patients without a focal seizure onset zone, neuromodulation targeting the thalamic nuclei-specifically the centromedian nucleus, anterior nucleus of the thalamus, and pulvinar nucleus-may be considered. Currently, thalamic nuclei selection is based mainly on the location of seizure onset, without a detailed evaluation of their network involvement.

View Article and Find Full Text PDF

Introduction: This study investigated low-density scalp electrical source imaging of the ictal onset zone and interictal spike ripple high-frequency oscillation networks using source coherence maps in the pediatric epilepsy surgical workup. Intracranial monitoring, the gold standard for determining epileptogenic zones, has limited spatial sampling. Source coherence analysis presents a promising new non-invasive technique.

View Article and Find Full Text PDF

The patient is a 10-month and 21-day-old girl who began to show developmental delays at 3 months of age, with severe language developmental disorders, stereotyped movements, and easily provoked laughter. Physical examination revealed fair skin and a flattened occiput. At 10 months of age, a video electroencephalogram suggested atypical absence seizures, with migrating slow-wave activity observed during the interictal period.

View Article and Find Full Text PDF

Spike-wave-discharges (SWD) are the electrophysiological hallmark of absence epilepsy. SWD are generated in the thalamo-cortical network and a seizure onset zone was identified in the somatosensory cortex (S1). We have shown before that inhibition of the centromedian thalamic nucleus (CM) in GAERS rats resulted in a selective suppression of the spike component while rhythmic cortical 5-9 Hz oscillations remained present.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!