Background: Ankle exoskeletons can now reduce the metabolic cost of walking in humans without leg disability, but the biomechanical mechanisms that underlie this augmentation are not fully understood. In this study, we analyze the energetics and lower limb mechanics of human study participants walking with and without an active autonomous ankle exoskeleton previously shown to reduce the metabolic cost of walking.
Methods: We measured the metabolic, kinetic and kinematic effects of wearing a battery powered bilateral ankle exoskeleton. Six participants walked on a level treadmill at 1.4 m/s under three conditions: exoskeleton not worn, exoskeleton worn in a powered-on state, and exoskeleton worn in a powered-off state. Metabolic rates were measured with a portable pulmonary gas exchange unit, body marker positions with a motion capture system, and ground reaction forces with a force-plate instrumented treadmill. Inverse dynamics were then used to estimate ankle, knee and hip torques and mechanical powers.
Results: The active ankle exoskeleton provided a mean positive power of 0.105 ± 0.008 W/kg per leg during the push-off region of stance phase. The net metabolic cost of walking with the active exoskeleton (3.28 ± 0.10 W/kg) was an 11 ± 4 % (p = 0.019) reduction compared to the cost of walking without the exoskeleton (3.71 ± 0.14 W/kg). Wearing the ankle exoskeleton significantly reduced the mean positive power of the ankle joint by 0.033 ± 0.006 W/kg (p = 0.007), the knee joint by 0.042 ± 0.015 W/kg (p = 0.020), and the hip joint by 0.034 ± 0.009 W/kg (p = 0.006).
Conclusions: This study shows that the ankle exoskeleton does not exclusively reduce positive mechanical power at the ankle joint, but also mitigates positive power at the knee and hip. Furthermore, the active ankle exoskeleton did not simply replace biological ankle function in walking, but rather augmented the total (biological + exoskeletal) ankle moment and power. This study underscores the need for comprehensive models of human-exoskeleton interaction and global optimization methods for the discovery of new control strategies that optimize the physiological impact of leg exoskeletons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730720 | PMC |
http://dx.doi.org/10.1186/s12984-016-0111-3 | DOI Listing |
Mil Med
December 2024
Human Performance Director, 563rd Rescue Group, University of Alabama at Birmingham, Sports and Exercise Medicine, Birmingham, AL 35204, USA.
Lower extremity fractures and musculoskeletal injuries are among the leading causes of morbidity for Special Operations Forces (SOF), frequently resulting in prolonged immobilization and weeks of therapeutic exercises and strength training to return to full status. This is a case of a 34-year-old Caucasian combat rescue officer with a stable right distal fibula (Weber B) fracture managed with early mobilization and assisted plantarflexion using a Dephy Exoboot device. Early mobilization resulted in no adverse events and resulted in a significant reduction in down-time compared with usual care.
View Article and Find Full Text PDFThis pilot study investigated the feasibility and efficacy of using autonomous ankle exoskeletons in community settings among individuals with cerebral palsy (CP). Five participants completed two structured community walking protocols: a week-long ankle exoskeleton acclimation and training intervention, and a dose-matched Sham intervention of unassisted walking. Results demonstrated significant improvements in acclimatized walking performance with the ankle exoskeleton, including increased speed and stride length.
View Article and Find Full Text PDFPLoS One
November 2024
Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America.
Background: There is growing interest in the use of biofeedback-augmented gait training in cerebral palsy (CP). Audiovisual, sensorimotor, and immersive biofeedback paradigms are commonly used to elicit short-term gait improvements; however, outcomes remain variable. Because biofeedback training requires that individuals have the capacity to both adapt their gait in response to feedback and retain improvements across sessions, changes in either capacity may affect outcomes.
View Article and Find Full Text PDFProc Inst Mech Eng H
December 2024
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
Rev Sci Instrum
November 2024
Shenyang Ligong University, No. 6 Nanping Middle Road, Hunnan District, Shenyang City, Liaoning Province 110158, China.
Nowadays, exoskeletons have a place in many fields, such as industrial production, medical rehabilitation, and military. However, there are still many shortcomings in the existing exoskeleton, such as heavyweight and complex structures for active exoskeleton. The driving ability of passive exoskeletons is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!