Rapid, Effective DNA Isolation from Osmanthus via Modified Alkaline Lysis.

J Biomol Tech

U.S. Department of Agriculture, Agricultural Research Service, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Otis L. Floyd Nursery Research Center, McMinnville, Tennessee, USA.

Published: July 2016

Variability of leaf structure and presence of secondary metabolites in mature leaf tissue present a challenge for reliable DNA extraction from Osmanthus species and cultivars. The objective of this study was to develop a universal rapid, effective, and cost-efficient method of DNA isolation for Osmanthus mature leaf tissue. Four different methods were used to isolate DNA from 8 cultivars of Osmanthus. Absorbance spectra, DNA concentration, appearance on agarose gel, and performance in PCR were used to analyze quality, quantity, and integrity of isolated DNA. Methods were ranked in order, based on total quantity, quality, and performance points as the following: 1) solid-phase extraction (SPE), 2) modified alkaline lysis (SDS), 3) cetyltrimethylammonium bromide (CTAB) with chloroform (CHL), and 4) CTAB with phenol/chloroform (PHE). Total DNA, isolated via SPE, showed the least contamination but the lowest mean quantity (9.6 ± 3.4 μg) and highest cost. The highest quantity of DNA was isolated via SDS (117 ± 54.1 μg). SPE and SDS resolved the most individuals on agarose gel, whereas the 2 CTAB methods had poorly resolved gels. All methods except PHE performed well in PCR. Additions to the modified alkaline lysis method increased A260:A230 by up to 59% without affecting yield. With the use of SDS, an average of 1000 μg/g DNA was isolated from fresh leaf tissue of 18 samples in ∼1.5 h at a cost of 0.74 U.S. dollars (USD)/sample. We recommend improved alkaline lysis as a rapid, effective, and cost-efficient method of isolating DNA from Osmanthus species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719223PMC
http://dx.doi.org/10.7171/jbt.16-2702-001DOI Listing

Publication Analysis

Top Keywords

alkaline lysis
16
rapid effective
12
modified alkaline
12
leaf tissue
12
dna isolated
12
dna
10
dna isolation
8
isolation osmanthus
8
mature leaf
8
osmanthus species
8

Similar Publications

Optimized protocol for single-cell isolation and alkaline comet assay to detect DNA damage in cells of Drosophila wing imaginal discs.

STAR Protoc

January 2025

Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, TN, Italy; Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA. Electronic address:

Reduced expression of nucleolar genes induces stress and DNA damage. Here, we present a protocol to analyze DNA fragmentation at the single-cell level in Drosophila imaginal discs using an optimized alkaline comet assay. We describe steps for larvae development, tissue disaggregation, and single-cell dissociation.

View Article and Find Full Text PDF

Reframing Formalin: A Molecular Opportunity Enabling Historical Epigenomics and Retrospective Gene Expression Studies.

Mol Ecol Resour

January 2025

National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, Australian Capital Territory, Australia.

Formalin preservation of museum specimens has long been considered a barrier to molecular research due to extensive crosslinking and chemical modification. However, recent optimisation of hot alkaline lysis and proteinase K digestion DNA extraction methods have enabled a growing number of studies to overcome these challenges and conduct genome-wide re-sequencing and targeted locus-specific sequencing. The newest, and perhaps most unexpected utility of formalin preservation in archival samples is its ability to preserve in situ DNA-protein interactions at a molecular level.

View Article and Find Full Text PDF
Article Synopsis
  • Hard tick exoskeletons make DNA extraction difficult, prompting researchers to test a modified method for extracting DNA from ethanol-preserved ticks for genetic studies.
  • The new method was compared to three commercial kits and showed similar DNA concentration and purity across different life stages of ticks.
  • The extracted DNA was used for PCR amplification of phylogenetic markers to analyze Amblyomma integrum, a potential disease vector, demonstrating a cost-effective approach that can aid genetic research in low-resource settings.
View Article and Find Full Text PDF

Application of a novel phage vB_CjeM_WX1 to control Campylobacter jejuni in foods.

Int J Food Microbiol

January 2025

Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China. Electronic address:

Article Synopsis
  • Campylobacter jejuni is a major cause of gastroenteritis, and a new phage named vB_CjeM_WX1 (WX1) was isolated from chicken feces as a potential biocontrol agent against it.
  • WX1 is capable of surviving extreme conditions (high temperatures, acidic and alkaline environments, high salt concentrations, and UV exposure) and can effectively lyse multiple strains of highly virulent, multi-drug resistant C. jejuni.
  • This phage demonstrated effectiveness in reducing biofilm formation and lower C. jejuni levels on surfaces and in chicken skin, suggesting its promising application in food safety and poultry farming practices.
View Article and Find Full Text PDF

Involvement of aquaporins in Shiga toxin-induced swelling and water transport dysfunction in human renal microvascular endothelial cells.

Biochim Biophys Acta Mol Cell Res

January 2025

Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Fisiopatogenia, Buenos Aires C1121ABG, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Buenos Aires C1121ABG, Argentina. Electronic address:

One of the hallmarks of Shiga toxin-producing Escherichia coli-associated hemolytic uremic syndrome (STEC-HUS) is kidney damage. Our previous research demonstrated that Shiga toxin type 2 (Stx2a) decreases cell viability and induces swelling of human glomerular endothelial cells (HGEC). However, Stx2a can disrupt net water transport across HGEC monolayers without affecting cell viability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!