Catalytic reduction of dioxygen with modified Thermus thermophilus cytochrome c552.

J Inorg Biochem

Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada. Electronic address:

Published: April 2016

Efficient catalysis of the oxygen reduction reaction (ORR) is of central importance to function in fuel cells. Metalloproteins, such as laccase (Cu) or cytochrome c oxidase (Cu/Fe-heme) carry out the 4H(+)/4e(-) reduction quite efficiently, but using large, complex protein frameworks. Smaller heme proteins also can carry out ORR, but less efficiently. To gain greater insight into features that promote efficient ORR, we expressed, characterized, and investigated the electrochemical behavior of six new mutants of cytochrome c552 from Thermus thermophilus: V49S/M69A, V49T/M69A, L29D/V49S/M69A, P27A/P28A/L29D/V49S/M69A, and P27A/P28A/L29D/V49T/M69A. Mutation to V49 causes only minor shifts to Fe(III/II) reduction potentials (E°'), but introduction of Ser provides a hydrogen bond donor that slightly enhances oxygen reduction activity. Mutation of L29 to D induces small shifts in heme optical spectra, but not to E°' (within experimental error). Replacement of P27 and P28 with A in both positions induces a -50 mV shift in E°', again with small changes to the optical spectra. Both the optical spectra and reduction potentials have signatures consistent with peroxidase enzymes. The V49S and V49T mutations have the largest impact of ORR catalysis, suggesting that increased electron density at the Fe site does not improve O2 reduction chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2016.01.023DOI Listing

Publication Analysis

Top Keywords

optical spectra
12
thermus thermophilus
8
cytochrome c552
8
oxygen reduction
8
reduction potentials
8
reduction
6
catalytic reduction
4
reduction dioxygen
4
dioxygen modified
4
modified thermus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!