Two novel panchromatic asymmetrical squaraine sensitizers (SPSQ1 and SPSQ2) have been synthesized, characterized and effectively used for TiO2-based dye sensitized solar cells. In a solution, both dyes display a highly intense near-IR absorption (SPSQ1; 651 nm and SPSQ2; 692 nm), the red shifted absorption of SPSQ2 was attributed to the incorporation of the auxiliary acceptor dicyanovinyl unit on the squaraine moiety. Interestingly, the dicyanovinyl unit lowered the LUMO level of SPSQ2, which decreased the band gap and red shifted the absorption when compared to SPSQ1. These dyes possess suitable HOMO and LUMO levels to work as efficient sensitizers in DSSCs. The experimental trends in their optical and electrochemical properties are well matched with the theoretical calculations modeled by TDDFT. The blue and green color of the devices showed their complementary absorption and harvest a greater number of photons from solar flux. Under standard global AM 1.5 G solar conditions, the DSSC based on SPSQ2 exhibited a high power conversion efficiency of 3.1% with a high short circuit current density (JSC) attributed to the broadening of the IPCE spectra in the UV-vis and near-IR regions when compared to SPSQ1 (2.5%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5pp00335k | DOI Listing |
Int J Biol Macromol
January 2025
Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India. Electronic address:
Polysaccharides, found universally in all living-species, exhibit diverse biochemical structures and play crucial roles in microorganisms, animals, and plants to defend against pathogens, environmental stress and climate-changing. Microbial exopolysaccharides are essential for cell adhesion and stress resilience and using them has notable advantages over synthetic polysaccharides. Exopolysaccharides have versatile structures and physicochemical properties, used in food systems, therapeutics, cosmetics, agriculture, and polymer industries.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Institute of Blue and Green Development, Shandong University, Weihai, 264209, China; Faculty of Finance, City University of Macau, Macao, China. Electronic address:
The impact of supply chain digitalization (SCD) on carbon dioxide emissions is an emerging area of research, particularly in China, which is the world's largest carbon emitter. This study uses micro-level data on listed companies from 2010 to 2021 to systematically verify the impact and mechanism of SCD on corporate carbon emissions (CCE) through the difference-in-differences model. We determined that SCD can significantly reduce CCE and its implementation path involves three aspects: promoting technological innovation, reducing financing constraints, and increasing market attention.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China. Electronic address:
As climate change and urbanization progress, the urban heat island issue will affect more people. Urban blue-green spaces can effectively mitigate the urban heat island effect, and their structure and morphology significantly impact the degree of mitigation. To identify the most effective blue-green space distribution for mitigating the heat island effect across different urban function zones (UFZ), we selected 14 landscape metrics of blue-green spaces in the main urban area of Nanjing.
View Article and Find Full Text PDFLuminescence
January 2025
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Two versatile yet simple methods, colorimetric and spectrofluorimetric, were utilized for the quantitation of nonchromophore neomycin using silver nanoparticles modified with fluorescein. Fluorescein was excited at 485 nm (emission at 515 nm); when it is deposited on the surface of silver nanoparticles, its fluorescence intensity at 515 nm is quenched. Neomycin restores the fluorescence level at 515 nm by displacing fluorescein from nanoparticle binding sites.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Plant Pathology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
Background: Bacillus species produce antimicrobial lipopeptides (LPs) and methyl jasmonate (MeJA) induces resistance in harvested fruits against postharvest pathogens. However, there is limited evidence of the combined efficacy of Bacillus LPs and MeJA to suppress postharvest diseases.
Results: This study presents the combined effect of Bacillus LPs and MeJA to suppress P.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!